Allyl sulfides are characteristic flavor components obtained from garlic. These sulfides are thought to be responsible for their epidemiologically proven anticancer effect on garlic eaters. This study was aimed at clarifying the molecular basis of this anticancer effect of garlic by using human colon cancer cell lines HCT-15 and DLD-1. The growth of the cells was significantly suppressed by diallyl trisulfide (DATS, HCT-15 IC 50 ؍ 11.5 M, DLD-1 IC 50 ؍ 13.3 M); however, neither diallyl monosulfide nor diallyl disulfide showed such an effect. The proportion of HCT-15 and that of DLD-1 cells residing at the G 1 and S phases were decreased by DATS, and their populations at the G 2 /M phase were markedly increased for up to 12 h. The cells with a sub-G 1 DNA content were increased thereafter. Caspase-3 activity was also dramatically increased by DATS. Fluorescence-activated cell sorter analysis performed on the cells arrested at the G 1 /S boundary revealed cell cycle-dependent induction of apoptosis through the transition of the G 2 /M phase to the G 1 phase by DATS. DATS inhibited tubulin polymerization in an in vitro cell-free system. DATS disrupted microtubule network formation of the cells, and microtubule fragments could be seen at the interphase. Peptide mass mapping by liquid chromatography-tandem mass spectrometry analysis for DATS-treated tubulin demonstrated that there was a specific oxidative modification of cysteine residues Cys-12 and Cys-354 to form S-allylmercaptocysteine with a peptide mass increase of 72.1 Da. The potent antitumor activity of DATS was also demonstrated in nude mice bearing HCT-15 xenografts. This is the first paper describing intracellular target molecules directly modified by garlic components.Allyl sulfides, e.g. diallyl monosulfide (DAS), 4 diallyl disulfide (DADS), and diallyl trisulfide (DATS), are characteristic flavor components of the essential oil prepared from garlic (Allium sativum L.). Garlic is widely served around the world, and it has been reported that allyl sulfides inhibit both the initiation and promotion stages of tumorigenesis in experimental carcinogenesis models for various types of cancer (1-5). Recently, several lines of investigation have shown that allyl sulfides suppress cell growth and induce apoptosis in multiple cancer cell lines (6 -12). We previously reported that the sulfur-containing volatile oils prepared from garlic and onion inhibit proliferation and induce differentiation of the human promyelocytic leukemia cell line HL-60 (13). However, the molecular mechanisms underlying the antitumorigenesis of allyl sulfides are still not fully understood.Microtubules are ubiquitous proteins present in eukaryotes as components of the cytoskeleton and play pivotal roles in a variety of cellular processes involving cell division, motility, and intracellular trafficking (14). The microtubules are dynamic polymers composed of ␣-tubulin heterodimers, and they form the mitotic spindles, which are known to introduce the replicated DNA molecules to the res...
The amygdala is located in the caudal part of the ventral telencephalon. It is composed of many subdivisions and is involved in the control of emotion. It is important to know the mechanisms of amygdalar development in order to analyze the pathogenesis of emotional disorders, but they are still not adequately understood. In the present study the migration, differentiation, and distribution of amygdalar neurons in the mouse embryo were investigated by means of in utero electroporation. Ventricular zone cells in restricted regions, that is, the caudal ganglionic eminence (CGE), the ventral pallium, the lateral pallium, and the diencephalon, were labeled with an expression vector of the enhanced green fluorescent protein (EGFP) gene. Labeling at embryonic day (E)10 revealed that the central nucleus originates from the neuroepithelium in the ganglionic eminence and the labeling at E11 and E12 revealed that the basolateral complex originates from the neuroepithelium of the ventral and lateral pallia. The introduction of the EGFP gene into the neuroepithelium of the third ventricle at E11 showed that the medial nucleus originates, at least in part, from the neuroepithelium of the diencephalon and migrates over the diencephalo-telencephalic boundary. The radial glial arrangement corresponded well with the initial migration of amygdalar neurons, and the radial processes later formed the boundary demarcating the basolateral complex. These findings indicate that the neurons originating from the temporally and spatially restricted neuroepithelium in both the telencephalon and diencephalon migrate and differentiate to form the mosaic of amygdalar subdivisions. J.
Aneuploidy, a chromosomal numerical abnormality in the conceptus or fetus, occurs in at least 5% of all pregnancies and is the leading cause of early pregnancy loss in humans. Accumulating evidence now suggests that the correct segregation of chromosomes is affected by events occurring in prophase during meiosis I. These events include homologous chromosome pairing, sister-chromatid cohesion, and meiotic recombination. In our current study, we show that mutations in SYCP3, a gene encoding an essential component of the synaptonemal complex that is central to the interaction of homologous chromosomes, are associated with recurrent pregnancy loss. Two out of 26 women with recurrent pregnancy loss of unknown cause were found to carry independent heterozygous nucleotide alterations in this gene, neither of which was present among a group of 150 fertile women. Analysis of transcripts from minigenes harboring each of these two mutations revealed that both affected normal splicing, possibly resulting in the production of C-terminally mutated proteins. The mutant proteins were found to interact with their wild-type counterpart in vitro and inhibit the normal fiber formation of the SYCP3 protein when coexpressed in a heterologous system. These data suggest that these mutations are likely to generate an aberrant synaptonemal complex in a dominant-negative manner and contribute to abnormal chromosomal behavior that might lead to recurrent miscarriage. Combined with the fact that similar mutations have been previously identified in two males with azoospermia, our current data suggest that sexual dimorphism in response to meiotic disruption occurs even in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.