The only genome sequence for monkey B virus (BV; species Macacine
herpesvirus 1) is that of an attenuated vaccine strain originally isolated from
a rhesus monkey (BVrh). Here we report the genome sequence of a virulent BV strain
isolated from a cynomolgus macaque (BVcy). The overall genome organization is the same,
although sequence differences exist. The greatest sequence divergence is located in
non-coding areas of the long and short repeat regions. Like BVrh, BVcy has duplicated Ori
elements and lacks an ORF corresponding to the μ34.5 gene of herpes simplex virus.
Nine of ten miRNAs and the majority of ORFs are conserved between BVrh and BVcy. The most
divergent genes are several membrane-associated proteins and those encoding immediate
early proteins.
An unidentified Helicobacter species, strain MIT 01-6451, was frequently detected in mice obtained from domestic commercial and academic institutions in Japan. To partially characterize this strain, its distributions in the gastrointestinal tract and hepatobiliary system of mice were investigated. In gastrointestinal tissues, this strain was detected in all cecum, colon, and feces samples tested, whereas fewer mice were positive in the ileum, jejunum, and duodenum. Interestingly, strain MIT 01-6451 was also detected in most stomach samples and in 33% of gallbladder samples. One mouse was found to be infected with multiple Helicobacter species. Fourteen copies of 16S rRNA genes were cloned from the tissues of this mouse. One had the highest level of sequence homology with H. canadensis, while 13 had the highest level of homology with the H. ganmani type strain or strain MIT 01-6451. Twelve of these 13 16S rRNA genes were mosaic sequences, being partially derived from H. ganmani and strain MIT 01-6451. These results suggest that H. ganmani and Helicobacter sp. MIT 01-6451 are prevalent in specific-pathogen-free mouse colonies in Japan and that lateral gene transfer probably occurs among Helicobacter species during coinfection.
More than 30 strains of lymphocytic choriomeningitis virus (LCMV) have been isolated from mice, hamsters and humans in the United States, Europe and Japan. Experimentally infected mice exhibit different clinical signs and lethality depending on a combination of LCMV epitope peptides and host major histocompatibility complex (MHC) class I molecules. This study examined the pathogenicity, clinical signs and lethality, of two new LCMV strains (BRC and OQ28) using three inbred mouse strains with different genetic backgrounds having different H-2D haplotypes. Strain OQ28 (OQ28) infected mice exhibited clinical signs and lethality, whereas strain BRC (BRC) infected mice showed no clinical signs of infection. The viral genome load in tissues of C57BL/6 mice infected with two strains was determined using one-step real time RT-PCR. In C57BL/6 mice, higher levels of OQ28 viral genome load were detected in all tissues rather than were present in BRC infected mice. The viral genome load in lungs of both virus strains remained higher levels than in other tissues at 28 days post infection. Comparing sequences of the three LCMV epitope peptide regions revealed one non-conservative amino acid substitution codon in OQ28 and two amino acid differences in BRC. These results suggest that the varied pathogenicity and viral genome load of LCMV strains are not based only on differences in the host MHC class I molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.