BackgroundSeasonal variation and regional heterogeneity have been observed in the estimated effect of fine particulate matter (PM2.5) mass on mortality. Differences in the chemical compositions of PM2.5 may cause this variation. We investigated the association of the daily concentration of PM2.5 components with mortality in Nagoya, Japan.MethodsWe combined daily mortality counts for all residents aged 65 years and older with concentration data for PM2.5 mass and components in Nagoya from April 2003 to December 2007. A time-stratified case-crossover design was used to examine the association of daily mortality with PM2.5 mass and each component (chloride, nitrate, sulfate, sodium, potassium, calcium, magnesium, ammonium, elemental carbon [EC], and organic carbon [OC]).ResultsWe found a stronger association between mortality and PM2.5 mass in transitional seasons. In analysis for each PM2.5 component, sulfate, nitrate, chloride, ammonium, potassium, EC, and OC were significantly associated with mortality in a single-pollutant model. In a multi-pollutant model, an interquartile range increase in the concentration of sulfate was marginally associated with an increase in all-cause mortality of 2.1% (95% confidence interval, −0.1 to 4.4).ConclusionsThese findings suggest that some specific PM components have a more hazardous effect than others and contribute to seasonal variation in the health effects of PM2.5.
In Japan, various countermeasures have been undertaken to reduce the atmospheric concentration of fine particulate matter (PM2.5). We evaluated the extent to which these countermeasures were effective in reducing PM2.5 concentrations by analyzing the long-term concentration trends of the major components of PM2.5 and their emissions in Nagoya City. PM2.5 concentrations decreased by 53% over the 16-year period from fiscal years 2003 to 2018 in Nagoya City. Elemental carbon (EC) was the component of PM2.5 with the greatest decrease in concentration over the 16 years, decreasing by 4.3 μg/m3, followed by SO42− (3.0 μg/m3), organic carbon (OC) (2.0 μg/m3), NH4+ (1.6 μg/m3), and NO3− (1.3 μg/m3). The decrease in EC concentration was found to be caused largely by the effect of diesel emission control. OC concentrations decreased because of the effects of volatile organic compound (VOC) emission regulations for stationary sources and reductions in VOCs emitted by vehicles and construction machinery. NO3− concentrations decreased alongside decreased contributions from vehicles, construction machinery, and stationary sources, in descending order of the magnitude of decrease. Although these findings identify some source control measures that have been effective in reducing PM2.5, they also reveal the ineffectiveness of some recent countermeasures for various components, such as those targeting OC concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.