Implant-associated infection is a common postoperative complication and remains a serious problem in the surgery. This work describes the development of hydroxyapatite implants with photo-bactericidal properties by the surface coating. The unique coating as crystalline nanoparticles of IR photosensitizers of implant was investigated using infrared spectroscopy. It has been proved that by the interaction of nanoparticles covering implant with the polar solvent, which simulates the interaction of the implant with the biocomponents in vivo (fast proliferating and with immune-competent cells), IR photosensitizers nanoparticles change the spectroscopic properties, becoming fluorescent and phototoxic.Thus, the developed coating based on crystalline IR photosensitizer nanoparticles with studied specific properties should have antibacterial, anti-inflammatory effect by the photodynamic treatment in the near implant area. This research opens the prospect of such technology application in order to provide the local inflammatory and autoimmune reactions prevention in the area of implantation that will improve implant antimicrobial effects and reduce potential long-term cytotoxicity. The results of the study suggest a promising this technology in order to create implants with photo-bactericidal properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.