Background-Radiofrequency ablation has limitations, largely related to creation of lesions by heating. Here, we report the first nonthermal ablation by applying photodynamic therapy (PDT) to cardiac tissues using a custom-made deflectable laser catheter. The present study investigated the feasibility of PDT for cavotricuspid isthmus ablation in a canine model. Methods and Results-We evaluated the pharmacokinetic profiles of 17 canines after administration of a photosensitizer (talaporfin sodium) by various protocols. We succeeded in maintaining the photosensitizer concentration at a level in excess of the clinically effective dose for humans. Using a 4-polar 7-French deflectable laser catheter, we performed PDT-mediated cavotricuspid isthmus ablation in 8 canines. PDT caused oxidative injury only to the irradiated area and successfully produced a persistent electric conduction block. No acute, gross changes such as edematous degeneration, thrombus formation, steam pops, or traumatic injury were observed after irradiation. Hematoxylin and eosin staining of tissues samples also showed well-preserved endothelial layers. Testing of the blood samples taken before and after the procedure revealed no remarkable changes. Lesion size at 2 weeks after the procedure and the temperature data collected during irradiation were compared between the PDT and irrigated radiofrequency ablation procedures. A ventricular crosssection revealed a solid PDT lesion, which was as deep as a radiofrequency lesion. In addition, endocardial, surficial, and intramural temperature monitoring during the PDT irradiation clearly demonstrated the nonthermal nature of the ablation technique. Conclusions-Nonthermal PDT-mediated catheter ablation is a potentially novel treatment for cardiac arrhythmias.(Circ Arrhythm Electrophysiol. 2013;6:1025-1031.)
Recent functional neuroimaging studies have shown the possibility of decoding human mental states from their brain activity using noninvasive neuroimaging techniques. In this study, we applied multivariate pattern classification, in conjunction with a short interval of functional near-infrared spectroscopy measurements of the anterior frontal cortex, to decode whether a human likes or dislikes a presented visual object; an ability that is quite beneficial for a number of clinical and technological applications. A variety of objects comprising sceneries, cars, foods, and animals were used as the stimuli. The results showed the possibility of predicting subjective preference from a short interval of functional near-infrared spectroscopy measurements of the anterior frontal regions. In addition, the pattern localization results showed the neuroscientific validity of the constructed classifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.