A new solid-state dedicated circularly polarized luminescence (CPL) instrument (CPL-200CD) was successfully developed for measuring true CPL spectra for optically anisotropic samples on the basis of the Stokes-Mueller matrix approach. Electric components newly installed in the CPL-200CD include a pulse motor-driven sample rotation holder and a 100 kHz lock-in amplifier to achieve the linearly polarized luminescence measurement, which is essential for obtaining the true CPL signal for optically anisotropic samples. An acquisition approach devised for solid-state CPL analysis reduces the measurement times for a data set by ca. 98% compared with the time required in our previous method. As a result, the developed approach is very effective for samples susceptible to light-induced degradation. The theory and implementation of the method are described, and examples of its application to a CPL sample with macroscopic anisotropies are provided. An important advantage of the developed instrument is its ability to obtain molecular information for both excited and ground states because circular dichroism measurements can be performed by switching the monochromatic light to white light without rearrangement of the sample.
For Keggin-type polyoxometalate complexes (α-[XMo12O40]n− (X = S, P, As, Si, Ge; n = 2–4) and α-[XW12O40]n− (X = S, P, As, Si, Ge, B, Al; n = 2–5)), the conversion processes of the first two one-electron waves into a two-electron wave were investigated in dipolar aprotic solvents containing H+, Li+, or Na+ as a Lewis acid. A simulation of the cyclic voltammogram indicated that the potential difference (ΔEmid) between the first one- and two-electron redox waves served as a useful criterion for the basicity of the Keggin anions. According to the ΔEmid values, the Keggin anions were classified into the following four groups: (1) [SW12O40]2−; (2) [SMo12O40]2−, [XW12O40]3− (X = P, As); (3) [XMo12O40]3− (X = P, As), [XW12O40]4− (X = Si, Ge); (4) [XMo12O40]4− (X = Si, Ge), [XW12O40]5− (X = B, Al). The voltammetric properties of the Keggin anions were systematized with reference to their basicities.
We present a new numerical method of special relativistic resistive magnetohydrodynamics with scalar resistivity that can treat a range of phenomena, from nonrelativistic to relativistic (shock, contact discontinuity, and Alfvén wave). The present scheme calculates the numerical flux of fluid by using an approximate Riemann solver, and electromagnetic field by using the method of characteristics. Since this scheme uses appropriate characteristic velocities, it is capable of accurately solving problems that cannot be approximated as ideal magnetohydrodynamics and whose characteristic velocity is much lower than light velocity. The numerical results show that our scheme can solve the above problems as well as nearly ideal MHD problems. Our new scheme is particularly well suited to systems with initially weak magnetic field, and mixed phenomena of relativistic and non-relativistic velocity; for example, MRI in accretion disk, and super Alfvénic turbulence.
In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamics equation with the QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which is crucial in describing of quark–gluon plasma in high-energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In sound wave propagation, the intrinsic numerical viscosity is measured and its explicit expression is shown, which is the second-order of spatial resolution both in the presence and absence of physical viscosity. The expression of the numerical viscosity can be used to determine the maximum cell size in order to accurately measure the effect of physical viscosity in the numerical simulation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.