[Structure: see text]. Citrinadin A (2) is a pentacyclic indolinone alkaloid isolated from the cultured broth of a fungus, Penicillium citrinum, which was separated from a marine red alga. The absolute stereochemistry of the pentacyclic core in 2 and its new congener, citrinadin B (1), was elucidated by analysis of the ROESY spectrum for the chlorohydrin derivative (3) of 1 as well as comparison of the electronic circular dichroism (ECD) spectra for 1 and 2 with those of known spirooxiindole alkaloids. On the other hand, the absolute configuration at C-21 bearing an epoxide ring was assigned as S by comparison of the vibrational circular dichroism (VCD) spectra of 1 with those of model compounds 2S- and 2R-2,3-epoxy-3,3-dimethyl-1-phenylpropan-1-one (4a and 4b, respectively).
We have revealed the fundamental mechanism of specific Cs(+) adsorption into Prussian blue (PB) in order to develop high-performance PB-based Cs(+) adsorbents in the wake of the Fukushima nuclear accident. We compared two types of PB nanoparticles with formulae of Fe(III)4[Fe(II)(CN)6]3路xH2O (x = 10-15) (PB-1) and (NH4)0.70Fe(III)1.10[Fe(II)(CN)6]路1.7H2O (PB-2) with respect to the Cs(+) adsorption ability. The synthesised PB-1, by a common stoichiometric aqueous reaction between 4Fe(3+) and 3[Fe(II)(CN)6](4-), showed much more efficient Cs(+) adsorption ability than did the commercially available PB-2. A high value of the number of waters of crystallization, x, of PB-1 was caused by a lot of defect sites (vacant sites) of [Fe(II)(CN)6](4-) moieties that were filled with coordination and crystallization water molecules. Hydrated Cs(+) ions were preferably adsorbed via the hydrophilic defect sites and accompanied by proton-elimination from the coordination water. The low number of hydrophilic sites of PB-2 was responsible for its insufficient Cs(+) adsorption ability.
Lactobacillus plantarum is a facultatively anaerobic bacterium that can perform respiration under aerobic conditions in the presence of haem, with vitamin K 2 acting as a source of menaquinone. We investigated growth performance and oxidative stress resistance of Lb. plantarum WCFS1 cultures grown in de Man, Rogosa and Sharpe (MRS) medium without and with added manganese under fermentative, aerobic, aerobic with haem, and respiratory conditions. Previous studies showed that Lb. plantarum WCFS1 lacks a superoxide dismutase and requires high levels of manganese for optimum fermentative and aerobic growth. In this study, respiratory growth with added manganese resulted in significantly higher cell densities compared to the other growth conditions, while without manganese added, similar but lower cell densities were reached. Notably, cells derived from the respiratory cultures showed the highest hydrogen peroxide resistance in all conditions tested, although similar activity levels of haem-dependent catalase were detected in cells grown under aerobic conditions with haem. These results indicate that oxidative stress resistance of Lb. plantarum is affected by respiratory growth, growth phase, haem and manganese. As levels of haem and manganese can differ considerably in the raw materials used in fermentation processes, including those of milk, meat and vegetables, the insight gained here may provide tools to increase the performance and robustness of starter bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.