Bioconjugated quantum dots (QDs) provide a new class of biological labels for evaluating biomolecular signatures (biomarkers) on intact cells and tissue specimens. In particular, the use of multicolor QD probes in immunohistochemistry is considered one of the most important and clinically relevant applications. At present, however, clinical applications of QD-based immunohistochemistry have achieved only limited success. A major bottleneck is the lack of robust protocols to define the key parameters and steps. Here, we describe our recent experience, preliminary results and detailed protocols for QD-antibody conjugation, tissue specimen preparation, multicolor QD staining, image processing and biomarker quantification. The results demonstrate that bioconjugated QDs can be used for multiplexed profiling of molecular biomarkers, and ultimately for correlation with disease progression and response to therapy. In general, QD bioconjugation is completed within 1 day, and multiplexed molecular profiling takes 1-3 days depending on the number of biomarkers and QD probes used.
We report the rational design of multifunctional nanoparticles for short-interfering RNA (siRNA) delivery and imaging based on the use of semiconductor quantum dots (QDs) and proton-absorbing polymeric coatings (proton sponges). With a balanced composition of tertiary amine and carboxylic acid groups, these nanoparticles are specifically designed to address longstanding barriers in siRNA delivery such as cellular penetration, endosomal release, carrier unpacking, and intracellular transport. The results demonstrate dramatic improvement in gene silencing efficiency by 10-20-fold and simultaneous reduction in cellular toxicity by 5-6-fold, when compared directly with existing transfection agents for MDA-MB-231 cells. The QD-siRNA nanoparticles are also dual-modality optical and electron-microscopy probes, allowing real-time tracking and ultrastructural localization of QDs during delivery and transfection. These new insights and capabilities represent a major step toward nanoparticle engineering for imaging and therapeutic applications.
Quantum dot bioconjugates can be used for multiplexed and quantitative detection of tumor biomarkers in cells and tissues. This new technology should have significant impact on molecular pathology if validated with traditional techniques (such as western blotting, FISH, and IHC), and with large‐scale clinical studies. In addition, it could also become the first clinical application of quantum dots.
Lately certain cytotoxicity of quantum dots (QDs) and some deleterious effects of labeling procedure on stem cells differentiation abilities were shown. In the present study we compared cytotoxicity and intracellular processing of two different-sized protein-conjugated QDs after labeling of the human mesenchymal stem cells (hMSC). An asymmetrical intracellular uptake of red (605 nm) and green (525 nm) quantum dots was observed. We describe for the first time a size-dependent activation of autophagy, caused by nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.