The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based on data from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Corresponding author: C. R. Lawrence, e-mail: charles.lawrence@jpl.nasa.govArticle published by EDP Sciences A1, page 1 of 38 A&A 594, A1 (2016) Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds.
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest systematic all-sky survey of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing >10 3 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the estimates of the SZ strength parameter Y 5R500 are robust to pressureprofile variation and beam systematics, but accurate conversion to Y 500 requires the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical, and X-ray data sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples.
We present an analytic parametric model to describe the baryonic and dark matter distributions in clusters of galaxies with spherical symmetry. It is assumed that the dark matter density follows a Navarro, Frenk and White (NFW) profile and that the gas pressure is described by a generalised NFW (GNFW) profile. By further demanding hydrostatic equilibrium and that the gas fraction is small throughout the cluster, one obtains unique functional forms, dependent on basic cluster parameters, for the radial profiles of all the properties of interest in the cluster. We show these profiles are consistent both with numerical simulations and multi-wavelength observations of clusters. We also use our model to analyse six simulated SZ clusters as well as A611 SZ data from the Arcminute Microkelvin Imager (AMI). In each case, we derive the radial profile of the enclosed total mass and the gas pressure and show that the results are in good agreement with our model prediction.Comment: 10 pages, 3 table, 17 figure
We report new cm‐wave measurements at five frequencies between 15 and 18 GHz of the continuum emission from the reportedly anomalous ‘region 4’ of the nearby galaxy NGC 6946. We find that the emission in this frequency range is significantly in excess of that measured at 8.5 GHz, but has a spectrum from 15 to 18 GHz consistent with optically thin free–free emission from an ultracompact H ii region. In combination with previously published data, we fit four emission models containing different continuum components using the Bayesian spectrum analysis package radiospec. These fits show that, in combination with data at other frequencies, a model with a spinning dust component is slightly preferred to those that possess better‐established emission mechanisms.
Abell 2146 (z = 0.232) is a massive galaxy cluster currently undergoing a spectacular merger in the plane of the sky with a bullet-like morphology. It was the first system in which both the bow and upstream shock fronts were detected at X-ray wavelengths (Mach ∼ 2), yet deep GMRT 325 MHz observations failed to detect extended radio emission associated with the cluster as is typically seen in such systems. We present new, multi-configuration 1 − 2 GHz Karl G. Jansky Very Large Array (VLA) observations of Abell 2146 totalling 16 hours of observations. These data reveal for the first time the presence of an extended (≈ 850 kpc), faint radio structure associated with Abell 2146. The structure appears to harbour multiple components, one associated with the upstream shock which we classify as a radio relic and one associated with the subcluster core which is consisted as being a radio halo bounded by the bow shock. The newly detected structures have some of the lowest radio powers detected thus far in any cluster (P 1.4GHz, halo = 2.4 ± 0.2 × 10 23 W Hz −1 and P 1.4GHz, relic = 2.2 ± 0.2 × 10 23 W Hz −1 ). The flux measurement of the halo, as well as its morphology, also suggest that the halo was recently created (≈ 0.3 Gyr after core passage), consistent with the dynamical state of the cluster. These observations demonstrate the capacity of the upgraded VLA to detect extremely faint and extended radio structures. Based on these observations, we predict that many more radio relics and radio halos in merging clusters should be detected by future radio facilities such as the Square Kilometre Array (SKA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.