BackgroundMany strains of Thermus have been isolated from hot environments around the world. Thermus scotoductus SA-01 was isolated from fissure water collected 3.2 km below surface in a South African gold mine. The isolate is capable of dissimilatory iron reduction, growth with oxygen and nitrate as terminal electron acceptors and the ability to reduce a variety of metal ions, including gold, chromate and uranium, was demonstrated. The genomes from two different Thermus thermophilus strains have been completed. This paper represents the completed genome from a second Thermus species - T. scotoductus.ResultsThe genome of Thermus scotoductus SA-01 consists of a chromosome of 2,346,803 bp and a small plasmid which, together are about 11% larger than the Thermus thermophilus genomes. The T. thermophilus megaplasmid genes are part of the T. scotoductus chromosome and extensive rearrangement, deletion of nonessential genes and acquisition of gene islands have occurred, leading to a loss of synteny between the chromosomes of T. scotoductus and T. thermophilus. At least nine large inserts of which seven were identified as alien, were found, the most remarkable being a denitrification cluster and two operons relating to the metabolism of phenolics which appear to have been acquired from Meiothermus ruber. The majority of acquired genes are from closely related species of the Deinococcus-Thermus group, and many of the remaining genes are from microorganisms with a thermophilic or hyperthermophilic lifestyle. The natural competence of Thermus scotoductus was confirmed experimentally as expected as most of the proteins of the natural transformation system of Thermus thermophilus are present. Analysis of the metabolic capabilities revealed an extensive energy metabolism with many aerobic and anaerobic respiratory options. An abundance of sensor histidine kinases, response regulators and transporters for a wide variety of compounds are indicative of an oligotrophic lifestyle.ConclusionsThe genome of Thermus scotoductus SA-01 shows remarkable plasticity with the loss, acquisition and rearrangement of large portions of its genome compared to Thermus thermophilus. Its ability to naturally take up foreign DNA has helped it adapt rapidly to a subsurface lifestyle in the presence of a dense and diverse population which acted as source of nutrients. The genome of Thermus scotoductus illustrates how rapid adaptation can be achieved by a highly dynamic and plastic genome.
Clostridium difficile is considered to be one of the most important causes of health care-associated infections worldwide. In order to understand more fully the adaptive response of the organism to stressful conditions, we examined transcriptional changes resulting from a clinically relevant heat stress (41°C versus 37°C) in C. difficile strain 630 and identified 341 differentially expressed genes encompassing multiple cellular functional categories. While the transcriptome was relatively resilient to the applied heat stress, we noted upregulation of classical heat shock genes including the groEL and dnaK operons in addition to other stress-responsive genes. Interestingly, the flagellin gene (fliC) was downregulated, yet genes encoding the cell-wall associated flagellar components were upregulated suggesting that while motility may be reduced, adherence – to mucus or epithelial cells – could be enhanced during infection. We also observed that a number of phage associated genes were downregulated, as were genes associated with the conjugative transposon Tn5397 including a group II intron, thus highlighting a potential decrease in retromobility during heat stress. These data suggest that maintenance of lysogeny and genome wide stabilisation of mobile elements could be a global response to heat stress in this pathogen.
Five halophilic bacterial isolates namely SS1, SS2, SS3, SS5 and SS8 were isolated from soil sediments of Lunsu, a salty water body. All the bacterial isolates showed growth in LB medium containing up to 8.7% NaCl, pH 7–8 and at temperature range of 30–37°C. The bacterial isolates SS1 and SS3 require at least 3.8% NaCl for their growth, indicating their strict halophilic nature. Interestingly, bacterial isolates SS2, SS5 and SS8 but not SS1 and SS3 exhibited growth in medium supplemented with KCl. Accordingly, Na+ and K+ ions were detected at 1.39 and 0.0035%, respectively in Lunsu water. All the bacterial isolates were analyzed by random amplification of polymorphic DNA (RAPD) using four different random primers and produced PCR fragments ranging from 0.1 to 5 kb in size. Phylogenetic tree based on RAPD finger prints showed that SS1 and SS3 formed one group, while SS2 and SS5 formed the second group, whereas SS8 was out group. Sequence analysis of 16S rDNA identified SS1 and SS3 as Halobacillus trueperi, SS2 as Shewanella algae, SS5 as Halomonas venusta, and SS8 as Marinomonas sp. were deposited in GenBank with accession numbers of KM260166, KF751761, KF751760, KF751762 and KF751763, respectively. This is the first report on the presence of diverse halophilic bacteria in the foot hills of Himalayas.Electronic supplementary materialThe online version of this article (doi:10.1186/s40064-015-1028-1) contains supplementary material, which is available to authorized users.
BackgroundMushrooms exist as an integral and vital component of the ecosystem and are very precious fungi. Mushrooms have been traditionally used in herbal medicines for many centuries.Scope and ApproachThere are a variety of medicinal mushrooms mentioned in the current work such as Agaricus, Amanita, Calocybe, Cantharellus, Cordyceps, Coprinus, Cortinarius, Ganoderma, Grifola, Huitlacoche, Hydnum, Lentinus, Morchella, Pleurotus, Rigidoporus, Tremella, Trametes sp., etc., which play a vital role in various diseases because of several metabolic components and nutritional values. Medicinal mushrooms can be identified morphologically on the basis of their size, color (white, black, yellow, brown, cream, pink and purple-brown, etc.), chemical reactions, consistency of the stalk and cap, mode of attachment of the gills to the stalk, and spore color and mass, and further identified at a molecular level by Internal Transcribed Spacer (ITS) regions of gene sequencing. There are also other methods that have recently begun to be used for the identification of mushrooms such as high-pressure liquid chromatography (HPLC), nuclear magnetic resonance spectroscopy (NMR), microscopy, thin-layer chromatography (TLC), DNA sequencing, gas chromatography-mass spectrometry (GC-MS), chemical finger printing, ultra-performance liquid chromatography (UPLC), fourier transform infrared spectroscopy (FTIR), liquid chromatography quadrupole time-of-flight mass spectrometry (LCMS-TOF) and high-performance thin-layer chromatography (HPTLC). Lately, the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) technique is also used for the identification of fungi.Key Finding and ConclusionMedicinal mushrooms possess various biological activities like anti-oxidant, anti-cancer, anti-inflammatory, anti-aging, anti-tumor, anti-viral, anti-parasitic, anti-microbial, hepatoprotective, anti-HIV, anti-diabetic, and many others that will be mentioned in this article. This manuscript will provide future direction, action mechanisms, applications, and the recent collective information of medicinal mushrooms. In addition to many unknown metabolites and patented active metabolites are also included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.