Because fastigial efferent fibers partially decussate within the cerebellum and cerebellar corticovestibular projections pass near, or through, the fastigial nucleus (FN), degeneration studies based on lesions in the nucleus leave unresolved questions concerning fastigial projections. Attempts were made to determine fastigial projections in the monkey using autoradiographic tracing technics. Cells in rostral, caudal and all parts of the FN were labeled with i3H1 amino acids.Selective labeling of neurons in either rostral or caudal parts of the FN results in transport of isotope primarily via fibers of the contralateral uncinate fasciculus (UF) and the ipsilateral juxtarestiform body (JRB). Fastigial projec-tions to the vestibular nuclei are mainly to ventral portions of the lateral (LVN) and inferior (IVN) vestibular nuclei, are nearly symmetrical and are quantitatively similar on each side. Fastigiovestibular projections to cell groups f and x arise from all parts of the FN and are mainly crossed; modest projections to the medial vestibular nucleus are uncrossed. No fastigial efferent fibers end in the superior vestibular nucleus on either side, or in dorsal regions of the LVN. Crossed fibers descending in IVN terminate in the nucleus parasolitarius.Fastigioreticular fibers arise predominately from rostral regions of the FN, are entirely crossed and project mainly to: (1) medial regions of the nucleus reticularis gigantocellularis, (2) the dorsal paramedian reticular nucleus and (3) the magnocellular part of the lateral reticular nucleus. Fastigiopontine fibers, emerge with the UF, bypass the vestibular nuclei and terminate upon the contralateral dorsolateral pontine nuclei. Crossed fastigiospinal fibers separate from fastigiopontine fibers and descend in the ventrolateral tegmentum beneath the spinal trigeminal tract; in the medulla and upper cervical spinal cord these fibers are intermingled with those of the vestibulospinal tract. Fastigiospinal fibers terminate in the anterior gray horn a t C-1 and probably descend further.Ascending fastigial projections arise from caudal parts of the FN, are entirely crossed and ascend in dorsal parts of the midbrain tegmentum. Label is transported bilaterally to the superior colliculi and the nuclei of the posterior commissure. Contralateral fastigiothalamic projections terminate in the ventral posterolateral (VPLc and VPLo) and in parts of the ventral lateral (VLo) thalamic nuclei. The major region of termination of fastigiothalamic fibers is in VPLo.Fastigiothalamic projections, probably conveying impulses concerned with equilibrium and somatic proprioception, appear to impinge upon thalamic neurons receiving inputs from less specialized receptors that signal information concerning position sense and body movement. More modest fastigial projections to VLo could directly influence activity of neurons in the primary motor cortex. Although the fastigial nucleus receives a strictly ipsilateral, topographical input from lobules to the cerebellar vermis, its projection...
Because the globus pallidus gives rise to the principal efferent system of the corpus striatum and is traversed by several fibers systems, attempts were made to study the projections of its cells by autoradiographic technics. Tritiated amino acids (L-leucine, L-proline and L-lysine) were injected into: (1) the medial pallidal segment (MPS), (2) the MPS and the substantia innominata (SI), (3) portions of the MPS and the lateral pallidal segment (LPS) and (4) parts of the putamen. Cells labeled by injections of the MPS transported isotope to thalamic nuclei (ventral anterior, VApc, ventral lateral, VLo and VLm, and the centromedian, CM), the pedunculopontine nucleus (PPN), and the lateral habenular nucleus (Hbl). Labeled cells of the MPS and SI transported isotope to: (1) thalamic nuclei (VLo, VLm and CM), (2) PPN, (3) Hbl, (4) lateral and posterior regions of the hypothalamus, and (5) extensive dorsal regions of the substantia migra (SN). Comparisons of label transported from uptake of isotope by cells of the MPS, and cells of both pallidal segments, suggest that the LPS projects fibers only to the subthalamic nucleus (STN). Not all regions of the STN appear to receive fibers from the LPS. Selectively labeled neurons of the putamen transport isotope to broad regions of both pallidal segments and to the pars reticulata of the SN. This study suggests that cells of the MPS project profusely and topographically to: (1) the rostral ventral tier thalamic nuclei (VApc, VLo and VLm), (2) lateral portions of CM, and (3) the PPN. Fibers of the lenticular fasciculus appear to terminate preferentially in VLo. Cells in sublenticular portions of SI, and those extending into the medullary laminae of the pallidum, appear to project to: (1) HB1 via the stria medullaris, (2) the pars compacta of SN, (3) lateral and posterior regions of the hypothalamus, and (4) the so-called nucleus of the ansa lenticularis. Some fibers from cells of SI appear to join the dorsal stria terminalis, but none enter the inferior thalamic peduncle and none project to any part of the dorsomedial nucleus of the thalamus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.