Brain lactate concentration is usually assumed to be stable except when pathologic conditions cause a mismatch between glycolysis and respiration. Using newly developed 1H NMR spectroscopic techniques that allow measurement of lactate in vivo, we detected lactate elevations of 0.3-0.9 mM in human visual cortex during physiologic photic stimulation. The maximum rise appeared in the first few minutes; thereafter lactate concentration declined while stimulation continued. The results are consistent with a transient excess of glycolysis over respiration in the visual cortex, occurring as a normal response to stimulation in the physiologic range.Glucose and oxygen-the principal substrates ofbrain energy metabolism-are consumed by that organ at matched rates that ordinarily maintain stable lactate concentrations. Brain lactate elevations due to lack of oxygen or increased energy demand to the degree of status epilepticus are well-known phenomena, and extensive research on them has created a general impression that brain lactate elevation always reflects pathologic conditions. However, several recent reports suggest that brain activity within the physiologic range may cause brain lactate to rise. In an earlier study using nuclear magnetic resonance spectroscopy (MRS) in vivo, we found that lactate rose in posterior cerebral cortex of rabbits when electric shocks were delivered to the optic nerves (1). Ueki et al. (2) demonstrated lactate elevation in rat somatosensory cortex due to forepaw stimulation. In humans studied by positron emission tomography (PET), Fox et al. (3) showed that visual stimulation caused 30-50% increases in blood flow and glucose uptake of visual cortex, whereas oxygen extraction rose no more than 5%. Newly developed MRS techniques permit repeated noninvasive detection of lactate in a few cc of human brain (4-6). We have used such techniques to show that photic stimulation does indeed cause a clear, although transient, elevation of lactate in human visual cortex; a preliminary report has appeared (7).
To study the effects of glycogen depletion and insulin concentration on glycogen synthesis, gastrocnemius glycogen was measured with 13C-nuclear magnetic resonance at 4.7 T after exercise. Subjects performed single-leg toe raises to deplete gastrocnemius glycogen to 75, 50, or 25% of resting concentration (protocol I). Insulin dependence of glycogen synthesis was assessed after depletion to 25% with (protocol II) and without (protocol III) infusion of somatostatin to inhibit insulin secretion. After depletion to 75 and 50%, glycogen resynthesis rates were similar (2.4 +/- 0.7 and 2.8 +/- 0.6 mM/h, respectively). When glycogen was depleted to 25% (< 30 mM), the resynthesis rate was significantly higher (P < 0.02) at 33 +/- 7 mM/h, and it declined to 3.5 +/- 0.9 mM/h at > 35 mM glycogen. At < 35 mM glycogen, synthesis was not affected by low insulin (24 +/- 4 mM/h, protocol vs. 19 +/- 3 mM/h, protocol III), whereas at > 35 mM glycogen, synthesis ceased without insulin (-0.07 +/- 0.19 mM/h, protocol II). After depletion to 25% (protocol III), plasma lactate transiently increased (0.81 mM at rest, 1.82 mM 0 h after exercise, and 0.76 mM 2 h after exercise), whereas other plasma constituents did not significantly change. We conclude that after depletion to < 30 mM initial glycogen resynthesis is insulin independent and glycogen dependent, which suggests local control.
The behavioral effects of psychomotor stimulants such as amphetamine (AMPH) arise from their ability to elicit increases in extracellular dopamine (DA). These AMPH-induced increases are achieved by DA transporter (DAT)-mediated transmitter efflux. Recently, we have shown that AMPH self-administration is reduced in rats that have been depleted of insulin with the diabetogenic agent streptozotocin (STZ). In vitro studies suggest that hypoinsulinemia may regulate the actions of AMPH by inhibiting the insulin downstream effectors phosphotidylinositol 3-kinase (PI3K) and protein kinase B (PKB, or Akt), which we have previously shown are able to fine-tune DAT cell-surface expression. Here, we demonstrate that striatal Akt function, as well as DAT cell-surface expression, are significantly reduced by STZ. In addition, our data show that the release of DA, determined by high-speed chronoamperometry (HSCA) in the striatum, in response to AMPH, is severely impaired in these insulin-deficient rats. Importantly, selective inhibition of PI3K with LY294002 within the striatum results in a profound reduction in the subsequent potential for AMPH to evoke DA efflux. Consistent with our biochemical and in vivo electrochemical data, findings from functional magnetic resonance imaging experiments reveal that the ability of AMPH to elicit positive blood oxygen level–dependent signal changes in the striatum is significantly blunted in STZ-treated rats. Finally, local infusion of insulin into the striatum of STZ-treated animals significantly recovers the ability of AMPH to stimulate DA release as measured by high-speed chronoamperometry. The present studies establish that PI3K signaling regulates the neurochemical actions of AMPH-like psychomotor stimulants. These data suggest that insulin signaling pathways may represent a novel mechanism for regulating DA transmission, one which may be targeted for the treatment of AMPH abuse and potentially other dopaminergic disorders.
Abstractγ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in human brain and has been implicated in several neuropsychiatric disorders. In-vivo human brain GABA concentrations are near the detection limit for magnetic resonance spectroscopy (∼1 mM) and because of overlap with more abundant compounds, spectral editing is generally necessary to detect GABA. In previous reports, GABA spectra edited by J-difference spectroscopy vary considerably in appearance. We have evaluated the factors that affect GABA spectra and the conditions necessary for robust acquisition of J-difference spectra from arbitrary brain regions. In particular, we demonstrate that variations in spectral quality can be explained in part by the incoherent addition of transients that results from shot to shot frequency and phase variations. An automated time-domain spectral alignment strategy is presented that enables reproducible acquisition of high-quality GABA spectra at 3 Tesla with a standard 30 cm T/R volume coil. Representative GABA spectra from human frontal lobe, an area where susceptibility-induced frequency and phase variations are especially troublesome, are presented that demonstrate the robustness of the acquisition and data handling strategy used in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.