The imminent threat of viral epidemics and pandemics dictates a need for therapeutic approaches that target viral pathology irrespective of the infecting strain. Reactive oxygen species are ancient processes that protect plants, fungi and animals against invading pathogens including bacteria. However, in mammals reactive oxygen species production paradoxically promotes virus pathogenicity by mechanisms not yet defined. Here we identify that the primary enzymatic source of reactive oxygen species, NOX2 oxidase, is activated by single stranded RNA and DNA viruses in endocytic compartments resulting in endosomal hydrogen peroxide generation, which suppresses antiviral and humoral signaling networks via modification of a unique, highly conserved cysteine residue (Cys98) on Toll-like receptor-7. Accordingly, targeted inhibition of endosomal reactive oxygen species production abrogates influenza A virus pathogenicity. We conclude that endosomal reactive oxygen species promote fundamental molecular mechanisms of viral pathogenicity, and the specific targeting of this pathogenic process with endosomal-targeted reactive oxygen species inhibitors has implications for the treatment of viral disease.
Background Steroid-insensitive endotypes of asthma are an important clinical problem and effective therapies are required. They are associated with bacterial infection and non-eosinophilic inflammatory responses in the asthmatic lung. Macrolide therapy is effective in steroidinsensitive endotypes, such as non-eosinophilic asthma. However, whether the effects of macrolides are due to antimicrobial or anti-inflammatory mechanisms is not known. Objective To determine and assess the efficacy of macrolide (ie, clarithromycin) and non-macrolide (ie, amoxicillin) antibiotic treatments in experimental models of infection-induced, severe, steroid-insensitive neutrophilic allergic airways disease (SSIAAD), compared with steroid-sensitive AAD and to delineate the antimicrobial and anti-inflammatory effects of macrolide therapy. Methods We developed and used novel mouse models of Chlamydia and Haemophilus lung infection-induced SSIAAD. We used these models to investigate the effects of clarithromycin and amoxicillin treatment on immune responses and airways hyper-responsiveness (AHR) in Ova-induced, T helper lymphocyte (Th) 2 -associated steroid-sensitive AAD and infection-induced Th1/Th17-associated SSIAAD compared with dexamethasone treatment. Results Clarithromycin and amoxicillin had similar antimicrobial effects on infection. Amoxicillin did attenuate some features, but did not broadly suppress either form of AAD. It did restore steroid sensitivity in SSIAAD by reducing infection. In contrast, clarithromycin alone widely suppressed inflammation and AHR in both steroid-sensitive AAD and SSIAAD. This occurred through reductions in Th2 responses that drive steroid-sensitive eosinophilic AAD and tumour necrosis factor α and interleukin 17 responses that induce SSIAAD. Conclusions Macrolides have broad anti-inflammatory effects in AAD that are likely independent of their antimicrobial effects. The specific responses that are suppressed are dependent upon the responses that dominate during AAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.