Breeding timed to match optimal resource abundance is vital for the successful reproduction of species, and breeding is therefore sensitive to environmental cues. As the timing of breeding shifts with a changing climate, this may not only affect the onset of breeding but also its termination, and thus the length of the breeding period. We use an extensive dataset of over 820K nesting records of 73 bird species across the boreal region in Finland to probe for changes in the beginning, end, and duration of the breeding period over four decades (1975 to 2017). We uncover a general advance of breeding with a strong phylogenetic signal but no systematic variation over space. Additionally, 31% of species contracted their breeding period in at least one bioclimatic zone, as the end of the breeding period advanced more than the beginning. We did not detect a statistical difference in phenological responses of species with combinations of different migratory strategy or number of broods. Nonetheless, we find systematic differences in species responses, as the contraction in the breeding period was found almost exclusively in resident and short-distance migrating species, which generally breed early in the season. Overall, changes in the timing and duration of reproduction may potentially lead to more broods co-occurring in the early breeding season—a critical time for species’ reproductive success. Our findings highlight the importance of quantifying phenological change across species and over the entire season to reveal shifts in the community-level distribution of bird reproduction.
Data integration is a statistical modeling approach that incorporates multiple data sources within a unified analytical framework. Macrosystems ecology-the study of ecological phenomena at broad scales, including interactions across scales-increasingly employs data integration techniques to expand the spatiotemporal scope of research and inferences, increase the precision of parameter estimates, and account for multiple sources of uncertainty in estimates of multiscale processes. We highlight four common analytical challenges to data integration in macrosystems ecology research: data scale mismatches, unbalanced data, sampling biases, and model development and assessment. We explain each problem, discuss current approaches to address the issue, and describe potential areas of research to overcome these hurdles. Use of data integration techniques has increased rapidly in recent years, and given the inferential value of such approaches, we expect continued development and wider application across ecological disciplines, especially in macrosystems ecology.
Interactions between drought and insect defoliation may dramatically alter forestfunction under novel climate and disturbance regimes, but remain poorly understood. We empirically tested two important hypotheses regarding tree responses to drought and insect defoliation: (a) trees exhibit delayed, persistent, and cumulative growth responses to these stressors; (b) physiological feedbacks in tree responses to these stressors exacerbate their impacts on tree growth. These hypotheses remain largely untested at a landscape scale, yet are critical for predicting forest function under novel future conditions, given the connection between tree growth and demographic processes such as mortality and regeneration.2. We developed a Bayesian hierarchical model to quantify the ecological memory of tree growth to past water deficits and insect defoliation events, derive antecedent variables reflecting the persistent and cumulative effects of these stressors on current growth, and test for their interactive effects. The model was applied to extensive tree growth, weather, and defoliation survey data from western and eastern regions of the Canadian boreal forest impacted by recent drought and defoliation events and characterized by contrasting tree compositions, climates, and insect defoliators.3. Results revealed persistent negative tree growth responses to past water (all trees) and defoliation (host trees) stress lasting 3-6 and 10-12 years, respectively, depending on study region. Accounting for the ecological memory of tree growth to water and defoliation stress allowed for detection of interactions not previously demonstrated. Contrary to expectations, we found evidence for positive interactions among non-host trees likely due to reduced water stress following defoliation events. Regional differences in ecological memory to water stress highlight the role of climate in shaping forest responses to drought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.