Improving the long-term performance of deep geothermal reservoirs, as an energy source, can lead to a significant increase in efficiency of heat extractions from these assets. This will assist designers, energy firms, managers, and government decision makers to plan and maintain the use of limited available energy resources and hence enhance key sustainable development goals. Enhanced geothermal reservoirs possess a multi-phase behaviour with complex interrelationship between several parameters that makes the analysis and design of these systems challenging. Often, this challenge is increased when taking into consideration the optimum use of the available resources and induced costs during both creation and exploitation phases. This research presents a novel design approach developed to achieve efficiency and improved long-term performance in doublet enhanced geothermal systems (EGS). The proposed approach is based on an optimisation procedure using a numerical hybrid methodology integrating a multi-objective genetic algorithm with finite element analysis of fully coupled thermal hydraulic processes of reservoirs. The results of the optimisation process are discussed in comparison with data available from a benchmark case study. The results demonstrate a significant improvement in the long-term performance of EGS reservoir, both in terms of thermal power and costs when optimised using the proposed methodology.
Recently, the use of plastic products, such as polyethylene (PE) bottles and polypropylene (PP), has been significantly increased, which may lead to many environmental issues. Therefore, it is important to find methods to manage these waste materials without causing any ecological hazards. One of these methods is to use plastic wastes as soil stabiliser materials. In this study, PE and PP have been used in the form of fibres. The effect of the stabilisation was evaluated through carrying out standard laboratory tests. These tests have been conducted on natural and stabilised soils with four fibre contents (1%, 2%, 3%, and 4%) of the soil weight. The tests included the standard compaction test, unconfined compressive strength (UCS) test, California Bearing Ratio (CBR) test, and resilient modulus (Mr) tests. In all these tests, the fibre content was added in two lengths, which were 1.0 cm and 2.0 cm. Laboratory test results revealed that the plastic pieces decrease maximum dry density (MDD) and optimum moisture content (OMC) of the stabilised soils, which are required for the construction of embankments of lightweight materials. In addition, there was a significant improvement in the UCS of soils by 76.4 and 96.6% for both lengths of PE fibres and 57.4% and 73.0% for both lengths of PP fibres, respectively. Results of the CBR tests demonstrated that the inclusion of plastic fibres in clayey soils improves the strength and deformation behaviour of the soil especially with 4% fibre content for both lengths 1.0 cm and 2.0 cm, respectively, to a figure of 185 to 150% for PE and PP, respectively. Furthermore, the results of the Mr tests demonstrated that the mechanical properties improved to an extent. For an increase in fibre content, the resilient modulus increased by about 120% at 4% fibre content for PE. However, for PP, improvement in resilient modulus declined at 3% fibre content. Therefore, for soil stabilisation with fibre material, optimum fibre content shall be sought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.