A basin-scale oceanographic cruise (OCEANCERTAIN2015) was carried out in the Western Mediterranean (WMED) in summer 2015 to study the evolution of hydrological and biogeochemical properties of the most ubiquitous water mass of the Mediterranean Sea, the Intermediate Water (IW). IW is a relatively warm water mass, formed in the Eastern Mediterranean (EMED) and identified by a salinity maximum all over the basin. While it flows westward, toward and across the WMED, it gradually loses its characteristics. This study describes the along-path changes of thermohaline and biogeochemical properties of the IW in the WMED, trying to discriminate changes induced by mixing and changes induced by interior biogeochemical processes. In the first part of the path (from the Sicily Channel to the Tyrrhenian Sea), respiration in the IW interior was found to have a dominant role in determining its biogeochemical evolution. Afterward, when IW crosses regions of enhanced vertical dynamics (Ligurian Sea, Gulf of Lion and Catalan Sea), mixing with surrounding water masses becomes the primary process. In the final part of the investigated IW path (the Menorca-Mallorca region), the role of respiration is further masked by the effects of a complex circulation of IW, indicating that short-term sub-regional hydrological processes are important to define IW characteristics in the westernmost part of the investigated area. A pronounced along-path acidification was detected in IW, mainly due to remineralization of organic matter. This induced a shift of the carbonate equilibrium toward more acidic species and makes this water mass increasingly less adequate for an optimal growth of calcifying organisms. The carbonate buffering capacity also decreases as IW flows through the WMED, making it more exposed to the adverse effects of a decreasing pH. The present analysis indicates that IW evolution in the sub-basins of the WMED is currently driven by complex hydrological and biogeochemical processes, which could be differently impacted by coming climate changes, in particular considering expected increases of extreme meteorological events, mainly due to the warming of the Mediterranean basin.
Abstract. The Western MEDiterranean Sea BioGeochemical Climatology (BGC-WMED, https://doi.org/10.1594/PANGAEA.930447) (Belgacem et al., 2021) presented here is a product derived from quality-controlled in situ observations. Annual mean gridded nutrient fields for the period 1981–2017 and its sub-periods 1981–2004 and 2005–2017 on a horizontal 1/4∘ × 1/4∘ grid have been produced. The biogeochemical climatology is built on 19 depth levels and for the dissolved inorganic nutrients nitrate, phosphate and orthosilicate. To generate smooth and homogeneous interpolated fields, the method of the variational inverse model (VIM) was applied. A sensitivity analysis was carried out to assess the comparability of the data product with the observational data. The BGC-WMED was then compared to other available data products, i.e., the MedBFM biogeochemical reanalysis of the Mediterranean Sea and the World Ocean Atlas 2018 (WOA18) (its biogeochemical part). The new product reproduces common features with more detailed patterns and agrees with previous records. This suggests a good reference for the region and for the scientific community for the understanding of inorganic nutrient variability in the western Mediterranean Sea, in space and in time, but our new climatology can also be used to validate numerical simulations, making it a reference data product.
Abstract. Long-term time series are a fundamental prerequisite to understanding and detecting climate shifts and trends. Understanding the complex interplay of changing ocean variables and the biological implication for marine ecosystems requires extensive data collection for monitoring, hypothesis testing, and validation of modelling products. In marginal seas, such as the Mediterranean Sea, there are still monitoring gaps, both in time and in space. To contribute to filling these gaps, an extensive dataset of dissolved inorganic nutrient observations (nitrate, phosphate, and silicate) was collected between 2004 and 2017 in the western Mediterranean Sea and subjected to rigorous quality control techniques to provide to the scientific community a publicly available, long-term, quality-controlled, internally consistent biogeochemical data product. The data product includes 870 stations of dissolved inorganic nutrients, including temperature and salinity, sampled during 24 cruises. Details of the quality control (primary and secondary quality control) applied are reported. The data are available in PANGAEA (https://doi.org/10.1594/PANGAEA.904172, Belgacem et al., 2019).
18Long-term time-series are a fundamental prerequisite to understand and detect climate shifts and 19 trends. Understanding the complex interplay of changing ocean variables and the biological 20 implication for marine ecosystems requires extensive data collection for monitoring and hypothesis 21 testing and validation of modelling products. In marginal seas, such as Mediterranean Sea, there are 22 still monitoring gaps, both in time and in space. To contribute filling these gaps, an extensive dataset 23 of dissolved inorganic nutrients profiles (nitrate, NO 3 ; phosphate, PO 4 3-; and silicate, SiO 2 ) have been 24 collected between 2004 and 2017 in the Western Mediterranean Sea and subjected to quality control 25 techniques to provide to the scientific community a publicly available, long-term, quality controlled, 26
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.