This work proposes a lossless data compression algorithm for short data blocks. The proposed compression scheme combines a modified move-to-front algorithm with Huffman coding. This algorithm is applicable in storage systems where the data compression is performed on block level with short block sizes, in particular, in non-volatile memories. For block sizes in the range of 1[Formula: see text]kB, it provides a compression gain comparable to the Lempel–Ziv–Welch algorithm. Moreover, encoder and decoder architectures are proposed that have low memory requirements and provide fast data encoding and decoding.
Error correction coding for optical communication and storage requires high rate codes that enable high data throughput and low residual errors. Recently, different concatenated coding schemes were proposed that are based on binary BCH codes with low error correcting capabilities. In this work, low-complexity hard-and soft-input decoding methods for such codes are investigated. We propose three concepts to reduce the complexity of the decoder. For the algebraic decoding we demonstrate that Peterson's algorithm can be more efficient than the Berlekamp-Massey algorithm for single, double, and triple error correcting BCH codes. We propose an inversion-less version of Peterson's algorithm and a corresponding decoding architecture. Furthermore, we propose a decoding approach that combines algebraic hard-input decoding with soft-input bitflipping decoding. An acceptance criterion is utilised to determine the reliability of the estimated codewords. For many received codewords the stopping criterion indicates that the hard-decoding result is sufficiently reliable, and the costly soft-input decoding can be omitted. To reduce the memory size for the soft-values, we propose a bit-flipping decoder that stores only the positions and soft values of a small number of code symbols. This method significantly reduces the memory requirements and has little adverse effect on the decoding performance. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The Lempel-Ziv-Welch (LZW) algorithm is an important dictionary-based data compression approach that is used in many communication and storage systems. The parallel dictionary LZW (PDLZW) algorithm speeds up the LZW encoding by using multiple dictionaries. This simplifies the parallel search in the dictionaries. However, the compression gain of the PDLZW depends on the partitioning of the address space, i.e. on the sizes of the parallel dictionaries. This work proposes an address space partitioning technique that optimises the compression rate of the PDLZW. Numerical results for address spaces with 512, 1024, and 2048 entries demonstrate that the proposed address partitioning improves the performance of the PDLZW compared with the original proposal. These address space sizes are suitable for flash storage systems. Moreover, the PDLZW has relative high memory requirements which dominate the costs of a hardware implementation. This work proposes a recursive dictionary structure and a word partitioning technique that significantly reduce the memory size of the parallel dictionaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.