Simple and effective protocols of cell wall disruption were elaborated for tested fungal strains: Penicillium citrinum, Aspergillus fumigatus, Rhodotorula gracilis. Several techniques of cell wall disintegration were studied, including ultrasound disintegration, homogenization in bead mill, application of chemicals of various types, and osmotic shock. The release of proteins from fungal cells and the activity of a cytosolic enzyme, glucose-6-phosphate dehydrogenase, in the crude extracts were assayed to determine and compare the efficacy of each method. The presented studies allowed adjusting the particular method to a particular strain. The mechanical methods of disintegration appeared to be the most effective for the disintegration of yeast, R. gracilis, and filamentous fungi, A. fumigatus and P. citrinum. Ultrasonication and bead milling led to obtaining fungal cell-free extracts containing high concentrations of soluble proteins and active glucose-6-phosphate dehydrogenase systems.
Yeasts represent a very diverse group of microorganisms, and even strains that are classified as the same species often show a high level of genetic divergence. Yeasts biodiversity is closely related to their applicability. Biotechnological importance of yeast is almost immeasurable. For centuries, people have exploited its enzymatic potential to produce fermented food as bread or alcoholic beverages. Admittedly, yeasts application was initially instinctual, but with science and technology development, these microorganisms got the object of thorough scientific investigations. It must be recognized that yeast represents an excellent scientific model because of its eukaryotic origin and knowledge of genetics of yeast cells as well as metabolism examined in detail. In 1996, the genome of baker yeast Saccharomyces cerevisiae has been elucidated, what opened the opportunity for the global study of the expression and functioning of the eukaryotic genome. Also, currently, an international team is working on the synthesis of the 16 yeast chromosomes by synthetic biology tools, and the results are expected till the end of the year. Nowadays, yeast is regarded as a versatile tool for biotechnological purposes.
There is an interest in the use of compounds able to prevent organism damages. Antioxidants are such compounds that can protect from cells damages caused by free radicals and may be used in the treatment and prevention on many diseases, such as cancer, cardiovascular disease, diabetes, brain stroke, skin diseases as well as they delay the aging process. There are many sources of antioxidants. They can be synthetic or natural and especially those derived from natural sources, demand special attention. Phenolic compounds are substances which mainly possess such activity, but also vitamins and minerals. There are a lot of antioxidants, but in that review, the chosen compounds with outstanding antioxidant activity, mainly used in pharmaceuticals and cosmetics were described. The review shows the activity of phenolic acids (ferulic acid and caffeic acid) and polyphenols (ellagic acid, curcumin, genistein, hydroxytyrosol, resveratrol) and vitamins (C and E).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.