The derivation of the primitive endoderm layer from the pluripotent cells of the inner cell mass is one of the earliest differentiation and morphogenic events in embryonic development. GATA4 and GATA6 are the key transcription factors in the formation of extraembryonic endoderms, but their specific contribution to the derivation of each endoderm lineage needs clarification. We further analyzed the dynamic expression and mutant phenotypes of GATA6 in early mouse embryos. GATA6 and GATA4 are both expressed in primitive endoderm cells initially. At embryonic day (E) 5.0, parietal endoderm cells continue to express both GATA4 and GATA6; however, visceral endoderm cells express GATA4 but exhibit a reduced expression of GATA6. By and after E5.5, visceral endoderm cells no longer express GATA6. We also found that GATA6 null embryos did not form a morphologically recognizable primitive endoderm layer, and subsequently failed to form visceral and parietal endoderms. Thus, the current study establishes that GATA6 is essential for the formation of primitive endoderm, at a much earlier stage then previously recognized, and expression of GATA6 discriminates parietal endoderm from visceral endoderm lineages. Developmental Dynamics 237: 2820 -2829, 2008.
The differentiation and formation of the primitive endoderm in early embryos can be mimicked in vitro by the aggregation of embryonic stem cells to form embryoid bodies. We present morphological evidence that primitive endoderm cells often first locate in the interior of embryoid bodies and subsequently migrate to the surface. Cell mixing experiments indicate that surface positioning is an intrinsic property of endoderm epithelial cells. Moreover, Disabled-2 (Dab2) is required for surface sorting and positioning of the endoderm cells: when Dab2 expression was eliminated, the differentiated endoderm epithelial cells distributed throughout the interior of the embryoid bodies. Surprisingly, E-cadherin is dispensable for primitive endoderm differentiation and surface sorting in embryoid bodies. These results support the model that primitive endoderm cells first emerge in the interior of the inner cell mass and are subsequently sorted to the surface to form the primitive endoderm.
In response to retinoic acid, embryonic stem and carcinoma cells undergo differentiation to embryonic primitive endoderm cells, accompanied by a reduction in cell proliferation. Differentiation does not reduce the activation of cellular MAPK/Erk, but does uncouple mitogen-activated protein kinase (MAPK) activation from phosphorylation/activation of Elk-1 and results in inhibition of c-Fos expression, whereas phosphorylation of the cytoplasmic substrate p90RSK remains unaltered. Cell fractionation and confocal immunofluorescence microscopy demonstrated that activated MAPK is restricted to the cytoplasmic compartment after differentiation. An intact actin and microtubule cytoskeleton appears to be required for the restriction of MAPK nuclear entry induced by retinoic acid treatment because the cytoskeletal disrupting agents nocodazole, colchicine, and cytochalasin D are able to revert the suppression of c-Fos expression. Thus, suppression of cell proliferation after retinoic acid–induced endoderm differentiation of embryonic stem and carcinoma cells is achieved by restricting nuclear entry of activated MAPK, and an intact cytoskeleton is required for the restraint.
Retinoic acid induces cell differentiation and suppresses cell growth in a wide spectrum of cell lines, and down-regulation of activator protein-1 activity by retinoic acid contributes to these effects. In embryonic stem cell-like F9 teratocarcinoma cells, which are widely used to study retinoic acid actions on gene regulation and early embryonic differentiation, retinoic acid treatment for 4 days resulted in suppression of cell growth and differentiation into primitive and then visceral endoderm-like cells, accompanied by a suppression of serum-induced c-Fos expression. The MAPK (ERK) pathway was involved in mitogenic signaling in F9 cells stimulated with serum. Surprisingly, although c-Fos expression was reduced, the MAPK activity was not decreased by retinoic acid treatment. We found that retinoic acid treatment inhibited the phosphorylation of Elk-1, a target of activated MAPK required for c-Fos transcription. In F9 cells, the MAPK/MEK inhibitor PD98059 suppressed Elk-1 phosphorylation and c-Fos expression, indicating that MAPK activity is required for Elk-1 phosphorylation/activation. Phosphoprotein phosphatase 2B (calcineurin), the major phosphatase for activated Elk-1, is not the target in the disassociation of MAPK activation and c-Fos expression since its inhibition by cyclosporin A or activation by ionomycin had no significant effects on serum-stimulated c-Fos expression and Elk-1 phosphorylation. Thus, we conclude that retinoic acid treatment to induce F9 cell differentiation uncouples Ras/MAPK activation from c-Fos expression by reduction of Elk-1 phosphorylation through a mechanism not involving the activation of phosphoprotein phosphatase 2B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.