In this work, solar cells with a freshly made CH NH PbI perovskite film showed a power conversion efficiency (PCE) of 15.4 % whereas the one with 50 days aged perovskite film only 6.1 %. However, when the aged perovskite was covered with a layer of Al O deposited by atomic layer deposition (ALD) at room temperature (RT), the PCE value was clearly enhanced. X-ray photoelectron spectroscopy study showed that the ALD precursors are chemically active only at the perovskite surface and passivate it. Moreover, the RT-ALD-Al O -covered perovskite films showed enhanced ambient air stability.
The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene “molecules” nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.
Electrical characterisation of perovskite solar cells consisting of room-temperature atomic-layer-deposited aluminium oxide (RT-ALD-Al O ) film on top of a methyl ammonium lead triiodide (CH NH PbI ) absorber showed excellent stability of the power conversion efficiency (PCE) over a long time. Under the same environmental conditions (for 355 d), the average PCE of solar cells without the ALD layer decreased from 13.6 to 9.6 %, whereas that of solar cells containing 9 ALD cycles of depositing RT-ALD-Al O on top of CH NH PbI increased from 9.4 to 10.8 %. Spectromicroscopic investigations of the ALD/perovskite interface revealed that the maximum PCE with the ALD layer is obtained when the so-called perovskite cleaning process induced by ALD precursors is complete. The PCE enhancement over time is probably related to a self-healing process induced by the RT-ALD-Al O film. This work may provide a new direction for further improving the long-term stability and performance of perovskite solar cells.
In this study, the authors compared different Al2O3 films grown by atomic layer deposition (ALD) with the same aluminum precursor but on different substrates. The authors employed different process parameters such as thermal-ALD and plasma-enhanced-ALD using different substrate temperatures ranging from 280 °C down to room temperature. They characterized these films by resonant photoelectron spectroscopy and by electrical measurements. They established that generally the ALD-Al2O3 films show characteristic features of bulk Al2O3. For all films investigated, the authors found intrinsic defect states within the electronic band gap and identified excitonic, polaronic, and charge-transfer defect states. The authors gave an atomistic model to explain these intrinsic defects and found that their relative abundance is subject of the choice of ALD parameters and of the substrate used. They were able to relate the spectroscopic assigned in-gap defect states with the electronic charges as determined in our electrical measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.