Friedreich's ataxia is the most common inherited ataxia. Ninety‐six percent of patients are homozygous for GAA trinucleotide repeat expansions in the first intron of the frataxin gene. The remaining cases are compound heterozygotes for a GAA expansion and a frataxin point mutation. We report here the identification of 10 novel frataxin point mutations, and the detection of a previously described mutation (G130V) in two additional families. Most truncating mutations were in exon 1. All missense mutations were in the last three exons coding for the mature frataxin protein. The clinical features of 25 patients with identified frataxin point mutations were compared with those of 196 patients homozygous for the GAA expansion. A similar phenotype resulted from truncating mutations and from missense mutations in the carboxy‐terminal half of mature frataxin, suggesting that they cause a comparable loss of function. In contrast, the only two missense mutations located in the amino‐terminal half of mature frataxin (D122Y and G130V) cause an atypical and milder clinical presentation (early‐onset spastic gait with slow disease progression, absence of dysarthria, retained or brisk tendon reflexes, and mild or no cerebellar ataxia), suggesting that they only partially affect frataxin function. The incidence of optic disk pallor was higher in compound heterozygotes than in expansion homozygotes, which might correlate with a very low residual level of normal frataxin produced from the expanded allele. Ann Neurol 1999;45:200–206
Vitamin D-dependent rickets type I (VDDR-I), also known as pseudo-vitamin D-deficiency rickets, appears to result from deficiency of renal vitamin D 1alpha-hydroxylase activity. Prior work has shown that the affected gene lies on 12q13.3. We recently cloned the cDNA and gene for this enzyme, mitochondrial P450c1alpha, and we and others have found mutations in its gene in a few patients. To determine whether all patients with VDDR-I have mutations in P450c1alpha, we have analyzed the P450c1alpha gene in 19 individuals from 17 families representing various ethnic groups. The whole gene was PCR amplified and subjected to direct sequencing; candidate mutations were confirmed by repeat PCR of the relevant exon from genomic DNA from the patients and their parents. Microsatellite haplotyping with the markers D12S90, D12S305, and D12S104 was also done in all families. All patients had P450c1alpha mutations on both alleles. In the French Canadian population, among whom VDDR-I is common, 9 of 10 alleles bore the haplotype 4-7-1 and carried the mutation 958DeltaG. This haplotype and mutation were also seen in two other families and are easily identified because the mutation ablates a TaiI/MaeII site. Six families of widely divergent ethnic backgrounds carried a 7-bp duplication in association with four different microsatellite haplotypes, indicating a mutational hot spot. We found 14 different mutations, including 7 amino acid replacement mutations. When these missense mutations were analyzed by expressing the mutant enzyme in mouse Leydig MA-10 cells and assaying 1alpha-hydroxylase activity, none retained detectable 1alpha-hydroxylase activity. These studies show that most if not all patients with VDDR-I have severe mutations in P450c1alpha, and hence the disease should be referred to as "1alpha-hydroxylase deficiency."
Pathogenic trinucleotide repeat expansions were found among 61% of the dominant kindreds. Among patients with apparently recessive or negative family histories of ataxia, 6.8% and 4.4% tested positive for a CAG expansion at one of the dominant loci, and 11.4 and 5.2% of patients with apparently recessive or sporadic forms of ataxia had FA expansions. Because of the significant implications that a dominant versus recessive inheritance pattern has for future generations, it is important to screen patients who do not have a clearly dominant inheritance pattern for expansions at both the FA and the dominant ataxia loci.
on behalf of the Pediatric Disease Working Parties of the European Blood and Marrow Transplant Group BU is a key compound of conditioning regimens in children undergoing hematopoietic SCT (HSCT). Inter-individual differences in BU pharmacokinetics (PKs) might affect BU efficacy and toxicity. As BU is mainly metabolized by glutathione S-transferase (GST), we investigated the relationship between GSTA1, GSTM1 and GSTP1 genotypes with first-dose BU PKs, and the relationship with HSCT outcomes in 69 children receiving myeloablative conditioning regimen. GSTM1 null genotype correlated with higher BU exposure and lower clearance in patients older than 4 years (Pp0.04). In accordance with the suggested functional role, GSTA1*A2 haplotype was associated with lower drug levels and higher drug clearance (Pp0.03). Gene-dosage effect was also observed (Pp0.007). GSTA1 haplotypes were associated with HSCT outcomes. Patients with two copies of haplotype *A2 had better event free survival (P ¼ 0.03). In contrast, homozygous individuals for haplotypes *B and *B1 had higher occurrence of veno-occlusive disease (P ¼ 0.009). GSTM1 null individuals older than 4 years had more frequently graft versus host disease (P ¼ 0.03). In conclusion, we showed that GST gene variants influence BU PK and outcomes of HSCT in children. A model for the dosage adjustment with the inclusion of genetic and non-genetic factors should be evaluated in a future prospective validation cohort.
We identified two large French-Canadian families segregating a familial partial epilepsy syndrome with variable foci (FPEVF) characterized by mostly nocturnal seizures arising from frontal, temporal, and occasionally occipital epileptic foci. There is no evidence for structural brain damage or permanent neurological dysfunction. The syndrome is inherited as an autosomal dominant trait with incomplete penetrance. We mapped the disease locus to a 3. 8-cM interval on chromosome 22q11-q12, between markers D22S1144 and D22S685. Using the most conservative diagnostic scheme, the maximum cumulative LOD score was 6.53 at recombination fraction (straight theta) 0 with D22S689. The LOD score in the larger family was 5.34 at straight theta=0 with the same marker. The two families share an identical linked haplotype for >/=10 cM, including the candidate interval, indicating a recent founder effect. A severe phenotype in one of the probands may be caused by homozygosity for the causative mutation, as suggested by extensive homozygosity for the linked haplotype and a bilineal family history of epilepsy. An Australian family with a similar phenotype was not found to link to chromosome 22, indicating genetic heterogeneity of FPEVF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.