In this paper, the influence of material composition on structure and surface properties of bioactive coatings based on Cu and Ti is described. Nanocrystalline coatings were prepared by innovative pulsed DC magnetron sputtering. For their preparation, a multi-magnetron system was used in order to obtain films with various copper content. The main goal of our work was the complex analysis of biological activity of Cu-Ti films in comparison with their material composition and surface state. Antimicrobial activity (for E. coli and S. aureus), as well as the impact on cell viability (L929 line), were investigated. The physicochemical properties were examined with the aid of X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and atomic absorption spectroscopy. It was found that all prepared films were nanocrystalline and bactericidal, but their cytotoxicity was related to the Cu-content in the film. Complex analysis of the bioactivity was developed in relation to the copper ion migration process. Moreover, manufacturing of antibacterial films with stimulating action on L929 cell line was possible.
This paper describes the effect of a nanocrystalline thin film based on copper and titanium on mouse fibroblast cells. Cu–Ti coatings were prepared using magnetron sputtering. In their composition was 25 at.% Cu and 75 at.% Ti. The goal of the study was to evaluate the effect of the material on the survival, migration, and proliferative capabilities of mouse L929 fibroblasts. The Cu25Ti75 material had no effect on the induction of cell death and did not disturb the cell cycle phase. The study showed a unique effect of a Cu25Ti75 thin film on mouse fibroblast cells, and the results concerning mitochondrial activity, cell proliferation, and migration proved that the material is nontoxic and shows proliferative properties in a wound healing test. The possible biomedical applications of the new nanocrystalline thin film biomaterial with multifunctional properties are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.