Fraxinus excelsior L. is threatened by a variety of environmental factors causing a decline of the species. The most important biotic factors negatively affecting the condition of the F. excelsior population are fungi such as the pathogen Hymenoscyphus fraxineus. Abiotic factors with potentially harmful effect to the F. excelsior population are the accumulation of heavy metals and salinity in soils. Thus, the aim of this study was to investigate the impact of selected biotic and abiotic stress factors to determine which of them pose a threat to European ash. The study was conducted using in vitro techniques based on callus and seedlings regenerated via indirect organogenesis. Tissue cultures exclude the influence of other factors, including the environmental impact on ash extinction. The results confirmed very strong pathogenic potential of H. fraxineus in which after 14 days the callus tissue cells died as the tissue failed to activate its defense mechanisms. Experiments showed the high toxicity of cadmium in concentration of 0.027 mmol/L. Salinity caused the activity of oxidation enzymes to vary among seedlings and calluses in the control suggesting the enzymes play a role in controlling the morphogenetic development of tissue cultures.
Seed quality is an important issue in forestry as it is an essential parameter in the production of high quality planting material. Many factors may hinder the harvesting of high quality seeds, including an insufficient number of sunny days, external conditions in temperate climate zones, and fungal pathogens affecting development of seedlings. We undertook to develop a procedure maximizing seed protection and promoting the optimum physiological development of seedlings by examination of the impact of seed pelleting (a general seed protection method) on germination rates and seedling development of Scots pine (Pinus sylvestris L.). Germination of pelleted seeds was examined in relation to substrate (water vs. soil) and LED light spectrum (white vs. red-blue). Several dormancy breaking treatments were applied: stratification/scarification, and growth regulator treatments including gibberellic acid (GA3), indole-3-acetic acid (IAA) and 1-naphthaleneacetic acid (NAA), to stimulate seed germination. Experiments included independent tests for each treatment (stratification/scarification and plant growth regulators), and combinations of both stratification/scarification and phytohormone treatments. The impacts of these treatments and various controlled germination conditions on the fluorescence of chlorophyll were analyzed using the maximum efficiency of photosystem II photochemistry parameter (Fv/Fm). In addition, chlorophyll a and b content in Scots pine seedlings germinated from pelleted seeds, were quantified using high-performance liquid chromatography (HPLC). The combined stratification/scarification and growth regulator treatment was the most effective germination promoting method for pelleted Scots pine seeds. Scots pine seeds are highly likely to be photoblastic. The best germination rate, while maintaining optimal physiological parameters, was achieved in acidic soil (pH 5.0) with white LED light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.