Introduction. Cocaine-and amphetamine-regulated transcript (CART), neuropeptide Y (NPY) and galanin (GAL) act as neurotransmitters and neuromodulators in both the central and peripheral nervous systems. Their presence has been found in different taxonomic groups, in particular in mammals. However, only few investigators have studied these neuropeptides in the class Aves (birds). The aim of the present study was to describe the distribution of CART, NPY and GAL in the pterygopalatine ganglion (PPG) of the domestic duck (Anas platyrhynchos f. domestica). Material and methods. The experiment was conducted on 16 one-year-old domestic ducks of the Pekin breed of both sexes (8 males and 8 females). Frozen sections of the PPG were subjected to immunofluorescence staining using primary mouse monoclonal antibodies directed against CART and GAL and rabbit polyclonal antibody directed against NPY. Secondary antibodies were conjugated with Cy3 and FITC fluorochromes. Results. CART, NPY, and GAL were present in the PPG of the domestic duck. The highest immunoreactivity (IR) in the ganglionic cells was found for CART in the majority (83-85%) of neurons of both superior (SPPG) and inferior (IPPG) PPG. CART-IR was also found in small aggregations of neurons on the medial surface of the Harderian gland, and on the course of the palatine branch of the facial nerve. CART-IR was also observed in the nerve fibers of these neurons' aggregations; however, it was low in comparison to the immunoreactivity of the perikarya. Immunoreactivity of NPY was found in ganglionic neurons, but above all in numerous fibers of the SPPG and IPPG and within aggregations on the surface of the Harderian gland. NPY-IR cells were distributed irregularly over the cross-sections of the tested aggregations, and constituted from 36% to 43% of the SPPG and from 37% to 40% of the IPPG of all cross-sectioned neurons. GAL-immunoreactive perikarya, distributed irregularly across the sections, were observed in the SPPG, where they constituted 61-65%, and in the IPPG, where they made up 50-57% of all neurons. All immunoreactive neurons were characterized by immunopositive neuroplasm and immunonegative cell nuclei.
Introduction. Cholinergic and adrenergic innervation of the pancreas in chinchilla (Chinchilla Laniger Molina) was examined in this study. The pancreas is both an exocrine and endocrine gland with autonomic and sensory innervation presented by the numerous nerve fibers and small agglomerations of nerve cells. Material and methods. Investigations were performed on 16 adult chinchillas of both sexes. The material was collected immediately after death of the animals. Histochemical methods: AChE and SPG were used, in addition to routine technique of single and double immunohistochemical (IHC) staining using whole mount specimens and freezing sections with a thickness of 8 to 12 μm. In the immunofluorescence staining, primary antibodies directed against markers used to identify cholinergic -ChAT and VAChT, and adrenergic -DbH and TH neurons. Secondary antibodies were coupled to Alexa Fluor 488 and Alexa Fluor 555 fluorophores. Results. Histochemical studies (AChE) revealed that chinchilla pancreatic cholinergic innervation consisted of ganglionic neurocytes and numerous nerve fibers. These structures are located in the parenchyma of the exocrine part of the organ in close proximity to blood vessels and are present within the walls of the pancreatic ducts and interstitial connective tissue. A delicate fiber network around the Langerhans islets was also observed. The most numerous cholinergic structures were found in the head and tail, and the least numbers were found in the body of the pancreas. The SPG method revealed that adrenergic fibers form a network in the adventitia of blood vessels, and individual fibers run throughout the pancreatic parenchyma. Moreover, adrenergic nerve fibers were observed around the ganglionic neurocytes. This innervation was similar in all parts of the investigated organ. IHC investigations allowed observations of both the cholinergic and adrenergic activities of autonomic nerve structures. Additionally, using ChAT/DbH double staining, colocalization of these substances was observed in the fibers of the pancreatic parenchyma that passed through the cholinergic ganglia. Colocalization of VAChT and TH was found in nerve fibers of the exocrine part, in the walls of blood vessels, and in individual nerve cells. Colocalization of ChAT/DbH and VAChT/TH was observed in the single nerve cells and in the small (2-3 cell) ganglia. ChAT-and DbH-immunopositive nerve fibers were found in the area of the islets of Langerhans. Conclusions.The results indicate a more intense cholinergic innervation of the chinchilla's pancreas, which is represented by both ganglia and nerve fibers, while adrenergic structures are mainly represented by fibers and only single neurocytes. This arrangement of the investigated structures in this species may imply a major role for hormonal control of exocrine secretion in rodents.
The research was performed on 16 one-year-old domestic turkeys of Beltsville race and 16 domestic ducks of the Pekinese race, of both sexes. Standard histological technique was used and morphometric analysis was performed using histological samples. Ciliary ganglion morphometric analysis revealed the presence of two cell populations of ganglionic neurocytes: choroid and ciliary cells, clearly differing in diameter. Ciliary cells were predominant in turkeys, whereas choroid cells in ducks. The statistical analysis showed that the diameter and surface area of ganglionic neurocytes, the diameter and cross sectional area through the ciliary ganglion, as well as, the number of ganglionic cells on the cross-section through the ganglion were significantly larger (P<0.001) in turkeys than in ducks. The difference in the number of choroid and ciliary cells in domestic turkey and domestic duck is probably connected with eye accommodation, which seems to be greater in turkeys.
This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.