The Deep Underground Neutrino Experiment (DUNE) will be a world-class neutrino observatory and nucleon decay detector designed to answer fundamental questions about the nature of elementary particles and their role in the universe.
Abstract. The feasibility of a measurement of the electric and magnetic nucleon form factors at B-meson factories through the radiative return is studied. Angular distributions allow a separation of the contributions from the two form factors. The distributions are presented for the laboratory and the hadronic rest frame, and the advantages of different coordinate systems are investigated. It is demonstrated that Q 2 values up to 8 or even 9 GeV 2 are within reach. The Monte Carlo event generator PHOKHARA is extended to nucleon final states, and results are presented which include Next-to-Leading Order radiative corrections from initial-state radiation. The impact of angular cuts on rates and distributions is investigated and the relative importance of radiative corrections is analysed.
The recently constructed H4-VLE beam line, a tertiary extension branch of the existing H4 beam line in the CERN North Area, was commissioned in October 2018. The beam line was designed with the purpose of providing very low energy (VLE) hadrons and positrons to the NP-04 experiment, in the momentum range of 1-7 GeV=c. The production of these low-energy particles is achieved with a mixed hadron (pions, kaons, protons), 80 GeV=c secondary beam impinging on a thick target. The H4-VLE beam line has been instrumented with prototype scintillating fiber detectors providing the beam profile, intensity, and time-offlight measurement of the beam particles, that, together with Cherenkov threshold counters, permit an event-by-event particle identification over the entire momentum spectrum. In this paper, we present detailed results of the beam line performance and the measured beam composition, as well as the comparison of these measurements with simulations performed during the design phase using FLUKA and GEANT-4-based Monte-Carlo codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.