As general trends in current development of chemical analysis, including electroanalysis, one can indicate a search for methods fast and multianalyte, for miniaturized measuring devices, mechanization and automation of analytical processes. In all these trends a significant role is played by measurements in flow conditions. The major advantage of flow electroanalysis is a possibility of utilizing a kinetic discrimination in potentiometric measurements and enhancement of mass transport in voltammetric techniques. Flow injection techniques provide shortening of time of a single analytical determination due to reproducible use of transient signal from the detector without need of obtaining a steady-state equilibrium signal. Electrochemical detection in HPLC gives often improved selectivity and detection limit for electroactive solutes, whereas in capillary electrophoresis it allows a convenient design of portable, integrated chips for field application. This review presents state-of-the -art of flow electroanalysis based on 226 cited literature references
Additive manufacturing, enabling rapid prototyping and so‐called on‐demand production, has become a common method of creating parts or whole devices. On a 3D printer, real objects are produced layer by layer, thus creating extraordinary possibilities as to the number of applications for this type of devices. The opportunities offered by this technique seem to be pushing new boundaries when it comes to both the use of 3D printing in practice and new materials from which the 3D objects can be printed. However, the question arises whether, at the same time, this solution is safe enough to be used without limitations, wherever and by everyone. According to the scientific reports, three‐dimensional printing can pose a threat to the user, not only in terms of physical or mechanical hazards, but also through the potential emissions of chemical substances and fine particles. Thus, the presented publication collects information on the additive manufacturing, different techniques, and ways of printing with application of diverse raw materials. It presents an overview of the last 5 years’ publications focusing on 3D printing, especially regarding the potential chemical and particle emission resulting from the use of such printers in both the working environment and private spaces.
Office devices can release volatile organic compounds (VOCs) partly generated by toners and inks, as well as particles of paper. The aim of the presented study is to identify indoor emissions of volatile halogenated organic compounds into the office workspace environment. Mixtures of organic pollutants emitted by seven office devices, i.e. printers and copiers, were analyzed by taking samples in laboratory conditions during the operation of these appliances. Tests of volatile organic compound emissions from selected office devices were conducted in a simulated environment (test chamber). Samples of VOCs were collected using three-layered thermal desorption tubes. Separation and identification of organic pollutant emissions were made using thermal desorption combined with gas chromatography coupled to mass spectrometry. Test chamber studies indicated that operation of the office printer and copier would contribute to the significant concentration level of VOCs in typical office indoor air. Among the determined volatile halogenated compounds, only chlorinated organic compounds were identified, inter alia: trichloroethylene — carcinogenic — and tetrachloroethylene — possibly carcinogenic to human. The results show that daily exposure of an office worker to chemical factors released by the tested printing and copying units can be variable in terms of concentrations of VOCs. The highest emissions in the test chamber during printing were measured for ethylbenzene up to 41.3 μg m−3, xylenes up to 40.5 μg m−3 and in case of halogenated compounds the highest concentration for chlorobenzene was 6.48 μg m−3. The study included the comparison of chamber concentrations and unit-specific emission rates of selected VOCs and the identified halogenated compounds. The highest amount of total VOCs was emitted while copying with device D and was rated above 1235 μg m−3 and 8400 μg unit−1 h−1 on average.Electronic supplementary materialThe online version of this article (doi:10.1007/s11356-014-3672-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.