Portal dosimetry (PD) was performed for 181 fields from 14 IMRT plans of various clinical sites at gantry zero and source‐to‐detector distance (SDD) of 100 cm. PD was realized using aSi1000 electronic portal imaging device (EPID) and portal dose prediction (PDP) algorithm implemented in Eclipse treatment planning system (TPS). Agreement of PDP predicted and EPID measured photon fluence/dose distribution were evaluated using gamma (γ) index set at 3% at 3 mm distance to point agreement (DTA). Three gamma scaling parameters, maximum γfalse(γfalse)trueprefixmax, average γfalse(γfalse)avg and percentage of points with γ≤1false(γnormal%≤1false) were estimated for each field. An independent measurement was carried out using MatriXX 2D ion chamber array with detector plane at 100 cm and γtrueprefixmax,γavg and γnormal%≤1 were estimated using OmniPro IMRT analyzing software. Effect of extended SDD and gantry rotation on portal dosimetry outcome was also investigated for another 45 IMRT fields. PDP predicted and EPID measured photon fluence agrees well with overall mean values of γtrueprefixmax,γavg and γnormal%≤1 1 at 2.02, 0.24 and 99.43%, respectively. γfalse(γfalse)trueprefixmax value was lower in 15 MV compared to 6 MV IMRT plan. Independent verification using MatriXX showed comparable overall mean values of γfalse(γfalse)avg and γnormal%≤1 at 0.25 and 99.80%. However, in all plans, MatriXX showed significantly lower γmaxfalse(p<0.05false) with an overall mean value of 1.35. In portal dosimetry, compared to gamma values at 100 cm SDD, γtrueprefixmax,γavg and γnormal%≤1 values improve from a mean of 0.16, 0.03 and 0.26 at 110 cm SDD to 0.35, 0.05 and 0.29 at 140 cm SDD. PD outcome was independent of gantry rotation. In conclusion, both MatriXX 2D ion chamber array and portal dosimetry showed comparable results and can be use as an alternative to each other for relative photon fluence verification.PACS number (s): 87.55.D‐, 87.55.de, 87.55.kd,87.55.km,87.55.Qr,87.56Fc:
Physical and dosimetric characteristics of HDMLC were studied for SRS6, 6, and 10 MV X‐rays from Novalis Tx. This in‐built tertiary collimator consists of 60 pairs (32×0.25 cm; 26×0.5 cm and 2×0.7 cm) of leaves. Properties of HDMLC studied included alignment, readout and radiation field congruence, radiation penumbra, accuracy and reproducibility of leaf position and gap width, static and dynamic leaf shift, tongue‐and‐groove effect, leaf transmission and leakage, leaf travel speed, and delivery of dynamic conformal arc and IMRT. All tests were performed using a calibrated ionization chamber, film dosimetry and DynaLog file analysis. Alignment of leaves with isocenter plane was better than 0.03 cm at all gantry and collimator positions. The congruence of HDMLC readout and radiation field agreed to within ± 0.03cm for filed sizes ranging from 1×1 to 20×20 cm2. Mean 80% to 20% penumbra width parallel (perpendicular) to leaf motion was 0.24±0.05(0.21±0.02) cm, 0.37±0.12(0.29±0.07) cm, and 0.51±0.13(0.43±0.07) cm for SRS6, 6, and 10 MV X‐rays, respectively. Circular field penumbra was comparable to corresponding square field. Average penumbra of 1×20 cm2 field was effectively constant over off‐axis positions of up to 12 cm with mean value of 0.16 (± 0.01)cm at 1.5 cm depth and 0.38 (± 0.04)cm at 10 cm depth. Minimum and maximum effective penumbra along the straight diagonal edge of irregular fields increased from 0.3 and 0.32 cm at 70° steep angle to 0.35 and 0.56 cm at 20° steep angle. Modified Picket Fence test showed average FWHM of 0.18 cm and peak‐to‐peak distance of 1.99 cm for 0.1 cm band and 2 cm interband separation. Dynamic multileaf collimation (DMLC) output factor remained within ± 1% for 6 MV and ± 0.5% for 10 MV X‐rays at all gantry positions, and was reproducible within ± 0.5% over a period of 14 months. The static leaf shift was 0.03 cm for all energies, while dynamic leaf shift was 0.044 cm for 10 MV and 0.039 cm for both SRS6 and 6 MV X‐rays. The dose depression and corresponding tongue‐and‐groove size were 24% and 0.17 cm for 6 MV and 19% and 0.20 cm for 10 MV X‐rays. Average transmission through HDMLC was 1.09%, 1.14% and 1.34% for SRS6, 6 and 10 MV X‐rays. Analysis of DynaLog files for leaf speed test in arc dynamic mode, delivery test of dynamic conformal arc, and step‐and‐shoot and sliding window IMRT showed at least 95% or more of the error counts had misplacements < 0.2cm, with maximum root mean square (RMS) error value calculated at 0.13 cm. Accurate and reproducible leaf position and gap width, and less leakage and small consistent penumbra over the fields demonstrate HDMLC suitable for high‐dose resolution SRS and IMRT.PACS number: 87.56.N‐, 87.55.Qr, 87.50.cm, 87.55.de, 87.53.Ly
The performance of an image registration (IR) software was evaluated for automatically detecting known errors simulated through the movement of ExactCouch using an onboard imager. Twenty-seven set-up errors (11 translations, 10 rotations, 6 translation and rotation) were simulated by introducing offset up to ± 15 mm in three principal axes and 0° to ± 1° in yaw. For every simulated error, orthogonal kV radiograph and cone beam CT were acquired in half-fan (CBCT_HF) and full-fan (CBCT_FF) mode. The orthogonal radiographs and CBCTs were automatically co-registered to reference digitally reconstructed radiographs (DRRs) and planning CT using 2D-2D and 3D-3D matching software based on mutual information transformation. A total of 79 image sets (ten pairs of kV X-rays and 69 session of CBCT) were analyzed to determine the (a) reproducibility of IR outcome and (b) residual error, defined as the deviation between the known and IR software detected displacement in translation and rotation. The reproducibility of automatic IR of planning CT and repeat CBCTs taken with and without kilovoltage detector and kilovoltage X-ray source arm movement was excellent with mean SD of 0.1 mm in the translation and 0.0° in rotation. The average residual errors in translation and rotation were within ± 0.5 mm and ± 0.2°, ± 0.9 mm and ± 0.3°, and ± 0.4 mm and ± 0.2° for setup simulated only in translation, rotation, and both translation and rotation. The mean (SD) 3D vector was largest when only translational error was simulated and was 1.7 (1.1) mm for 2D-2D match of reference DRR with radiograph, 1.4 (0.6) and 1.3 (0.5) mm for 3D-3D match of reference CT and CBCT with full fan and half fan, respectively. In conclusion, the image-guided radiation therapy (IGRT) system is accurate within 1.8 mm and 0.4° and reproducible under control condition. Inherent error from any IGRT process should be taken into account while setting clinical IGRT protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.