AAV-AS Derived from AAV9 CNS-transduction improved 6-15x vs. AAV9 AAV-BR1 Derived from AAV2 Brain endothelium Olig001 Derived from AAVs1, 2, 6, 8, and 9 Oligodendrocytes TM6 Derived from AAV6 Microglia AAV-DJ Derived from AAVs 2, 4, 5, 8, and 9 Liver AAV-DJ/8 Derived from AAV-DJ Liver, CNS rAAV2retro Derived from AAV2 CNS-efficient retrograde transduction PHP.B Derived from AAV9 CNS-transduction improved ∼40x vs. AAV9 PHP.S Derived from PHP.B Peripheral nervous system PHP.eB Derived from PHP.B CNS-transduction rate further improved vs. PHP.B
Alpha-synuclein SNCA has been implicated in the etiology of Parkinson’s disease (PD); however, the normal function of alpha-synuclein protein and the pathway that mediates its pathogenic effect is yet to be discovered. We investigated the mechanistic role of SNCA in the nucleus utilizing isogenic human-induced pluripotent stem cells-derived neurons from PD patients with autosomal dominant mutations, A53T and SNCA-triplication, and their corresponding corrected lines by genome- and epigenome-editing. Comparisons of shape and integrity of the nuclear envelope and its resistance to stresses found that both mutations result in similar nuclear envelope perturbations that were reversed in the isogenic mutation-corrected cells. Further mechanistic studies showed that SNCA mutation has adverse effects on the nucleus by trapping Ras-related nuclear protein (RAN) and preventing it from transporting key nuclear proteins such as, DNMT3A, for maintaining normal nuclear function. For the first time, we proposed that α-syn interacts with RAN and normally functions in the nucleocytoplasmic transport while exerts its pathogenic effect by sequestering RAN. We suggest that defects in the nucleocytoplasmic transport components may be a general pathomechanistic driver of neurodegenerative diseases.
The use of hiPSC-derived cells represents a valuable approach to study human neurodegenerative diseases. Here, we describe an optimized protocol for the differentiation of hiPSCs derived from a patient with the triplication of the alpha-synuclein gene (SNCA) locus into Parkinson's disease (PD)-relevant dopaminergic neuronal populations. Accumulating evidence has shown that high levels of SNCA are causative for the development of PD. Recognizing the unmet need to establish novel therapeutic approaches for PD, especially those targeting the regulation of SNCA expression, we recently developed a CRISPR/dCas9-DNA-methylation-based system to epigenetically modulate SNCA transcription by enriching methylation levels at the SNCA intron 1 regulatory region. To deliver the system, consisting of a dead (deactivated) version of Cas9 (dCas9) fused with the catalytic domain of the DNA methyltransferase enzyme 3A (DNMT3A), a lentiviral vector is used. This system is applied to cells with the triplication of the SNCA locus and reduces the SNCA-mRNA and protein levels by about 30% through the targeted DNA methylation of SNCA intron 1. The fine-tuned downregulation of the SNCA levels rescues disease-related cellular phenotypes. In the current protocol, we aim to describe a step-by-step procedure for differentiating hiPSCs into neural progenitor cells (NPCs) and the establishment and validation of pyrosequencing assays for the evaluation of the methylation profile in the SNCA intron 1. To outline in more detail the lentivirus-CRISPR/dCas9 system used in these experiments, this protocol describes how to produce, purify, and concentrate lentiviral vectors and to highlight their suitability for epigenome-and genome-editing applications using hiPSCs and NPCs. The protocol
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.