The expression of penicillin binding protein 2a (PBP2a) is the basis for the broad clinical resistance to the β-lactam antibiotics by methicillin-resistant Staphylococcus aureus (MRSA). The high-molecular mass penicillin binding proteins of bacteria catalyze in separate domains the transglycosylase and transpeptidase activities required for the biosynthesis of the peptidoglycan polymer that comprises the bacterial cell wall. In bacteria susceptible to β-lactam antibiotics, the transpeptidase activity of their penicillin binding proteins (PBPs) is lost as a result of irreversible acylation of an active site serine by the β-lactam antibiotics. In contrast, the PBP2a of MRSA is resistant to β-lactam acylation and successfully catalyzes the DD-transpeptidation reaction necessary to complete the cell wall. The inability to contain MRSA infection with β-lactam antibiotics is a continuing public health concern. We report herein the identification of an allosteric binding domain--a remarkable 60 Å distant from the DD-transpeptidase active site--discovered by crystallographic analysis of a soluble construct of PBP2a. When this allosteric site is occupied, a multiresidue conformational change culminates in the opening of the active site to permit substrate entry. This same crystallographic analysis also reveals the identity of three allosteric ligands: muramic acid (a saccharide component of the peptidoglycan), the cell wall peptidoglycan, and ceftaroline, a recently approved anti-MRSA β-lactam antibiotic. The ability of an anti-MRSA β-lactam antibiotic to stimulate allosteric opening of the active site, thus predisposing PBP2a to inactivation by a second β-lactam molecule, opens an unprecedented realm for β-lactam antibiotic structure-based design.
SUMMARY Dissemination of Acinetobacter baumannii strains harboring class D β-lactamases producing resistance to carbapenem antibiotics severely limits our ability to treat deadly Acinetobacter infections. Susceptibility determination in the A. baumannii background and kinetic studies with a homogeneous preparation of OXA-23 β-lactamase, the major carbapenemase present in A. baumannii, document the ability of this enzyme in manifesting resistance to the last-resort carbapenem antibiotics. We also report three x-ray structures of OXA-23; apo OXA-23 at two different pH values, and wild-type OXA-23 in complex with meropenem, a carbapenem substrate. This represents the first structure of a wild-type class D carbapenemase with a carbapenem antibiotic in its active site. The structures and dynamics simulations reveal an important role for Leu166, whose motion regulates the access of a hydrolytic water molecule to the acyl-enzyme species in imparting carbapenemase activity.
The outer membrane protein A (OmpA) plays important roles in anchoring of the outer membrane to the bacterial cell wall. The C-terminal periplasmic domain of OmpA (OmpA-like domain) associates with the peptidoglycan (PGN) layer noncovalently. However, there is a paucity of information on the structural aspects of the mechanism of PGN recognition by OmpA-like domains. To elucidate this molecular recognition process, we solved the high-resolution crystal structure of an OmpA-like domain from Acinetobacter baumannii bound to diaminopimelate (DAP), a unique bacterial amino acid from the PGN. The structure clearly illustrates that two absolutely conserved Asp271 and Arg286 residues are the key to the binding to DAP of PGN. Identification of DAP as the central anchoring site of PGN to OmpA is further supported by isothermal titration calorimetry and a pulldown assay with PGN. An NMR-based computational model for complexation between the PGN and OmpA emerged, and this model is validated by determining the crystal structure in complex with a synthetic PGN fragment. These structural data provide a detailed glimpse of how the anchoring of OmpA to the cell wall of gram-negative bacteria takes place in a DAP-dependent manner.
The discoidin domain receptors (DDRs) are receptor tyrosine kinases that recognize collagens as their ligands. DDRs display unique structural features and distinctive activation kinetics, which set them apart from other members of the kinase superfamily. DDRs regulate cell-collagen interactions in normal and pathological conditions and thus are emerging as major sensors of collagen matrices and potential novel therapeutic targets. New structural and biological information has shed light on the molecular mechanisms that regulate DDR signaling, turnover, and function. This minireview provides an overview of these areas of DDR research with the goal of fostering further investigation of these intriguing and unique receptors. The discoidin domain receptor (DDR)2 family comprises two distinct members, DDR1 and DDR2, which were initially discovered in the early 1990s and characterized as receptor tyrosine kinases (RTKs) based on the presence of a catalytic kinase domain (KD) (1-7). Subsequently, collagens were identified as ligands for DDRs (8), thus establishing the unique characteristic of these receptors among other members of the RTK superfamily. Upon collagen binding, DDRs undergo tyrosine autophosphorylation with distinctive activation kinetics, which elicits genetic and cellular programs that regulate a variety of cell-collagen interactions. Despite their unique characteristics, the biochemical and cellular mechanisms by which DDRs mediate their multiple biological effects remain poorly defined. This minireview provides an overview of current information on DDR structure, regulation, and signaling. For information on specific DDR biological functions in processes such as cell adhesion, migration, and invasion over collagen matrices and their role in normal and pathological processes, the reader is directed to the following recent reviews (9 -11) DDR StructureThe DDR1 subfamily is composed of five membrane-anchored isoforms, and the DDR2 subfamily is represented by a single protein. The five DDR1 isoforms are generated by alternative splicing. DDR1a, DDR1b, and DDR1c are full-length functional receptors, and DDR1d and DDR1e are truncated or kinase-inactive receptors (10, 12). Two additional secreted splice variants of DDR1 have also been identified (13). DDR1b and DDR1c contain an additional 37 residues within the intracellular juxtamembrane (IJXM) region. With the exception of the two secreted DDR1 isoforms, all DDRs are single-pass type I transmembrane glycoproteins that are characterized by the presence of six distinct protein domains: a discoidin (DS) domain, a DS-like domain, an extracellular juxtamembrane (EJXM) region, a transmembrane (TM) segment, a long IJXM region, and an intracellular KD (Fig. 1A). The presence of the N-terminal DS and DS-like domains is the defining feature of the DDR RTK subfamily. The DS domain exhibits high homology to a protein module originally identified in proteins from Dictyostelium discoideum (14). In this organism, the DS domain functions as a galactose-binding lectin, whic...
In the face of the clinical challenge posed by resistant bacteria, the present needs for novel classes of antibiotics are genuine. In silico docking and screening, followed by chemical synthesis of a library of quinazolinones, led to the discovery of (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one (compound 2) as an antibiotic effective in vivo against methicillin-resistant Staphylococcus aureus (MRSA). This antibiotic impairs cell-wall biosynthesis as documented by functional assays, showing binding of 2 to penicillin-binding protein (PBP) 2a. We document that the antibiotic also inhibits PBP1 of S. aureus, indicating a broad targeting of structurally similar PBPs by this antibiotic. This class of antibiotics holds promise in fighting MRSA infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.