Provoking a specific cellular immune response against tumor-associated antigens is a promising therapeutic strategy to treat cancers with defined antigens such as melanoma. In recent clinical trials, however, immune responses against melanoma antigens have been elicited without consistent clinical responses, suggesting the need for approaches that potentiate the specific cellular immune response. Since B lymphocytes have been reported to exert a negative effect on the cellular arm of the immune response in certain model systems, the authors compared the protective immunity elicited by melanoma antigens in B cell-deficient microMT mice to that obtained in fully immunocompetent C57BL/6 mice. Immunization with melanoma-associated antigens was accomplished using recombinant adenovirus (Ad) vectors encoding human gp100 (Ad2/gp100) or murine TRP-2 (Ad2/mTRP-2). A single dose of Ad2/gp100 or Ad2/mTRP-2 inhibited the growth of established subcutaneous B16 melanoma tumors in B cell-deficient but not wild-type C57BL/6 mice. The enhanced tumor protection observed in B cell-deficient mice appeared to be associated with potentiation of the magnitude and longevity of the specific cellular immune response. Natural killer (NK) cells were also found to be essential to the protective immune response in microMT mice because NK cell depletion with anti-asialo-GM1 antibody resulted in both the loss of tumor growth suppression and attenuation of the specific cellular immune response. The authors conclude that the protective cell-mediated immunity provoked by Ad-based cancer vaccines is enhanced in the absence of B cells, suggesting that a therapeutic regimen that includes depletion of B lymphocytes may be beneficial to cancer vaccine therapy.
A phase I clinical trial was conducted in which recombinant adenovirus containing the cystic fibrosis trans-membrane regulator (CFTR) (Ad2/CFTR) was administered by bronchoscopic instillation or aerosolization to the lungs of cystic fibrosis (CF) patients. In this paper, we evaluate the efficiency of Ad2/CFTR-mediated transduction of bronchial airway cells. The ability of an Ad2/CFTR vector to transduce airway cells was first evaluated in patients to whom the vector was administered by bronchoscopic instillation. Cells at the administration site were collected 2 days after treatment by bronchoscopic brushing. Ad2-specific CFTR DNA was detected in four of five individuals by PCR, and Ad2-specific CFTR RNA was detected in three of five individuals by RT-PCR. Ad2/CFTR-mediated transduction of airway epithelial cells was then determined in CF individuals receiving this vector by aerosol inhalation. Ad2-specific CFTR DNA was detected in 13 of 13 individuals 2 days after aerosolization, and in 3 of 5 individuals 7 days after aerosolization. Ad2-specific RNA was detected in 4 of 13 individuals on day 2, but was not detected in the 5 individuals tested on day 7. The percentage of airway epithelial cells containing nuclear-localized vector DNA was < or =2.4% as determined by fluorescence in situ hybridization (FISH). However, in some cases, a high percentage of nonepithelial mononuclear cells or squamous metaplastic epithelial cells was infected with the adenoviral vector. In conclusion, aerosol administration is a feasible means to distribute adenoviral vectors throughout the conducting airways, but improvements in adenovirus-mediated transduction of airway epithelial cells are necessary before gene therapy for CF will be effective.
The recombinant adenoviral (Ad) vector is being considered as a cancer vaccine platform because it efficiently induces immune responses to tumor antigens by intradermal immunization. The aims of this study were to evaluate the potential toxicities and biodistribution after a single dose or six weekly intradermal doses of Ad2/gp100v2 and Ad2/MART-1v2, which encode tumor-associated antigens gp100 and MelanA/MART-1, respectively. The only dose-related toxicities associated with intradermal administration of these Ad vectors were inflammatory cell infiltrates in the draining lymph nodes and injection sites that persisted 83 days after administration. The biodistribution of Ad DNA as detected by real-time polymerase chain reaction was largely confined to the injection sites and draining lymph nodes of mice treated with either a single dose or multiple doses of Ad vector and in the spleens of mice treated with multiple doses of Ad vector. Adenoviral DNA was transiently detected in the bone marrow, lung, or blood of only one animal for each site and was below the limit of assay quantification (<10 copies/microg DNA). The vector persisted in the skin and lymph nodes as long as 92 days after the last dose. We conclude that Ad vectors delivered by intradermal administration provide a safe, genetic vaccine delivery platform that induces desirable immune responses at the immunization sites and the lymph nodes that, ultimately, result in immune responses specific to the tumor antigens.
Studies from several laboratories have shown that administration of E1-deleted Ad vectors results only in transient transgene expression in the lungs of immunocompetent animals. This is due, at least in part, to destruction of vector-transduced cells by host cellular immune responses (predominantly CD8(+) CTLs) directed against viral proteins and/or immunogenic transgene products. We have previously demonstrated that E1-deleted Ad vectors can lead to persistent expression of human cystic fibrosis transmembrane conductance regulator (hCFTR) in the lungs of several strains of immunocompetent mice, despite the presence of Ad-specific CTLs. However, we found that these same vectors gave rise only to transient hCFTR expression in the lungs of rhesus monkeys. We have constructed new Ad vectors that coexpress both hCFTR and the ICP47 gene from herpes simplex virus. ICP47 has been shown to inhibit the transporter associated with antigen presentation, thus blocking major histocompatibility antigen I (MHC class I)-mediated antigen presentation to CD8(+) T cells. The Ad/hCFTR/ICP47 vector decreased levels of cell-surface MHC class I molecules on infected monkey and human cell lines. Similar results were obtained with primary human cells and primary monkey airway epithelial cells. In vitro studies showed that the Ad/hCFTR/ICP47 vector decreased cytolysis by both monkey and human CTLs. When Ad/hCFTR/ICP47 was administered to the lungs of rhesus monkeys, it inhibited the generation of Ad-specific CTLs. However, natural killer cell activity was enhanced in monkeys treated with the Ad/hCFTR/ICP47 vector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.