The autoimmune regulator (AIRE) protein is a putative transcription regulator with two plant homeodomain-type zinc fingers, a putative DNA-binding domain (SAND), and four nuclear receptor binding LXXLL motifs. We have shown here that in vitro, recombinant AIRE can form homodimers and homotetramers that were also detected in thymic protein extracts. Recombinant AIRE also oligomerizes spontaneously upon phosphorylation by cAMP dependent protein kinase A or protein kinase C. Similarly, thymic AIRE protein is phosphorylated at the tyrosine and serine/threonine residues. AIRE dimers and tetramers, but not the monomers, can bind to G-doublets with the ATTGGTTA motif and the TTATTA-box. Competition assays revealed that sequences with one TTATTA motif and two tandem repeats of ATTGGTTA had the highest binding affinity. These findings demonstrate that AIRE is an important DNA binding molecule involved in immune regulation.Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), 1 also known as autoimmune polyglandular syndrome type 1 (APS1), is a rare autosomal recessive disorder common in isolated populations such as Finns, Sardinians, and Iranian Jews (1). This syndrome is characterized by destructive autoimmune diseases of the endocrine organs, chronic candidiasis of mucous membranes, and ectodermal disorders. APECED is caused by mutations in the autoimmune regulator (AIRE) gene on chromosome 21q22.3 (2-4). The AIRE gene has recently been cloned by two independent groups of investigators (5, 6). The AIRE gene consists of 14 exons coding for a 2445-base pair mRNA transcript, and the translated product is expected to have 545 amino acids with a predicted molecular mass of 57.5 kDa. The predicted AIRE protein has several domains indicative of a transcriptional regulator protein (6). AIRE harbors two zinc fingers of plant homeodomain (PHD) type. A putative DNA binding domain named SAND as well as four nuclear receptor binding LXXLL motifs, an inverted LXXLL domain, and a variant of the latter (FXXLL) hint that this protein functions as a transcription coactivator (5-7). Furthermore, a highly conserved N-terminal 100-amino acid domain in AIRE has a significant homology to the homogenously staining (HSR) domain of Sp100 and Sp140 proteins (7). This domain has been shown to function as a dimerization domain in several Sp-100 related proteins (8). At the subcellular level, AIRE can be found in the cell nucleus in a speckled pattern in domains resembling promyelocytic leukemia nuclear bodies, also known as ND10, nuclear dots, or potential oncogenic domains, associated with the AIRE homologous nuclear proteins Sp100, Sp140, and Lysp100 (9).Interestingly, it has recently been shown that AIRE can activate transcription from a reporter gene when fused to a heterologous DNA binding domain. This activation required the full-length protein or the presence of more than one activation domain. A glutathione S-transferase pull-down assay showed that AIRE formed homodimers in vitro, probably through the N-terminal domain (...
The study suggests that women with PCOS have reduced Tregs due to an inherent hyporesponsiveness to IL2, which is unable to activate STAT5B and reduce FOXP3 expression. IL2-based therapeutic strategies can ameliorate complications in PCOS by suppressing the AKT/PIK3 arm.
Establishment of early pregnancy is promoted by a complex network of signalling molecules that mediate cell-to-cell and cell-to-extracellular matrix communications between the receptive endometrium and the invasive trophectoderm. In this study, we have attempted to evaluate the expression profiles of cadherin and catenin during embryo implantation in the mouse. Western blotting studies along with immunocytochemical analysis revealed that E-cadherin is expressed rather ubiquitously in the uterine epithelial cells, distinct enrichment is observed on the apical membrane in the endometrium of peri-implantation uterus specifically at the implantation sites and not at the inter-implanation sites. b-Catenin also is upregulated and is specifically restricted to apical membrane of epithelial cells of implantation sites. Progesterone induced expression of E-cadherin and 17b-estradiol regulated the expression of catenin in implantation-delayed uteri. Interestingly, estradiol imparted negative modulation on cadherin expression when co-administered with progesterone. On the contrary, trophoblast exhibits a striking down regulation of cadherin, catenin and Ca 2+ at peri implanting stage. These observations suggest that the trophoblasts exhibited an invasive phenotype while the endometrial epithelium displayed an adhesive phenotype during the window of implantation. Thus, embryo implantation presents an instance where two interacting surfaces showed mutually complementing interaction phenotypes.
Transforming growth factor-beta (TGF-B) plays an important role in embryo implantation; however, TGF-B requires liberation from its inactive latent forms (i.e., large latent TGF-B complex [LLC] and small latent TGF-B complex [SLC]) to its biologically active (i.e., monomer or dimer) forms in order to act on its receptors (TGF-BRs), which in turn activate SMAD2/3. Activation of TGF-B1 from its latent complexes in the uterus is not yet deciphered. We investigated uterine latent TGF-B1 complex and its biologically active form during implantation, decidualization, and delayed implantation. Our study, utilizing nonreducing SDS-PAGE followed by Western blotting and immunoblotting with TGF-B1, LTBP1, and latency-associated peptide, showed the presence of LLC and SLC in the uterine extracellular matrix and plasma membranous protein fraction during stages of the implantation period. A biologically active form of TGF-B1 (~17-kDa monomer) was highly elevated in the uterine plasma membranous compartment at the peri-implantation stage (implantation and nonimplantation sites). Administration of hydroxychloroquine (an inhibitor of pro-TGF-B processing) at the preimplantation stage was able to block the liberation of biologically active TGF-B1 from its latent complex at the postimplantation stage; as a consequence, the number of implantation sites was reduced at Day 5 (1000 h), as was the number of fetuses at Day 13. The inhibition of TGF-B1 showed reduced levels of phosphorylated SMAD3. Further, the delayed-implantation mouse model showed progesterone and estradiol coordination to release the active TGF-B1 form from its latent complex in the receptive endometrium. This study demonstrates the importance of liberation of biologically active TGF-B1 during the implantation period and its regulation by estradiol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.