In the retail domain, estimating the sales before actual sales become known plays a key role in maintaining a successful business. This is due to the fact that most crucial decisions are bound to be based on these forecasts. Statistical sales forecasting models like ARIMA (Auto-Regressive Integrated Moving Average), can be identified as one of the most traditional and commonly used forecasting methodologies. Even though these models are capable of producing satisfactory forecasts for linear time series data they are not suitable for analyzing non-linear data. Therefore, machine learning models (such as Random Forest Regression, XGBoost) have been employed frequently as they were able to achieve better results using non-linear data. The recent research shows that deep learning models (e.g. recurrent neural networks) can provide higher accuracy in predictions compared to machine learning models due to their ability to persist information and identify temporal relationships. In this paper, we adopt a special variant of Long Short Term Memory (LSTM) network called LSTM model with peephole connections for sales prediction. We first build our model using historical features for sales forecasting. We compare the results of this initial LSTM model with multiple machine learning models, namely, the Extreme Gradient Boosting model (XGB) and Random Forest Regressor model(RFR). We further improve the prediction accuracy of the initial model by incorporating features that describe the future that is known to us in the current moment, an approach that has not been explored in previous state-of-the-art LSTM based forecasting models. The initial LSTM model we develop outperforms the machine learning models achieving 12% - 14% improvement whereas the improved LSTM model achieves 11\% - 13\% improvement compared to the improved machine learning models. Furthermore, we also show that our improved LSTM model can obtain a 20% - 21% improvement compared to the initial LSTM model, achieving significant improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.