In this study, new feature descriptors are designed for medical image retrieval and change detection applications, respectively. Inspired by isomerism, the authors propose a novel feature descriptor named antithetic isomeric cluster pattern (ANTIC). The ANTIC is defined by the two properties: cluster patterns and antithetic isomerism (ANTI). The cluster pattern corresponds to successive pixel intensity differences at antithetical orientations. Furthermore, the ANTI is characterised by two aspects: first, the clusters are oppositely oriented (antithetical) to each other and second, both adhere to a defined isomeric property. The ANTIC identifies the lines and corner point information in the local neighbourhood across various directions. To attain enhanced robustness, they further proposed multiresolution ANTIC by integrating the multiresolution Gaussian filter. Moreover, to reduce the feature dimensionality, they extended their work to rotation invariant features. The proposed method outperforms other widely used feature descriptors in biomedical and retinopathy image retrieval applications. In addition, they extracted spatiotemporal features by designing intra-ANTIC and inter-ANTIC to detect motion changes in video sequences. They validated the effectiveness of these features by conducting experiments on CDNet 2014 dataset. The proposed descriptor achieves better performance in various challenging conditions for change detection as compared to other state-of-the-art techniques.
A novel color feature descriptor, Multichannel Distributed Local Pattern (MDLP) is proposed in this manuscript. The MDLP combines the salient features of both local binary and local mesh patterns in the neighborhood. The multi-distance information computed by the MDLP aids in robust extraction of the texture arrangement. Further, MDLP features are extracted for each color channel of an image. The retrieval performance of the MDLP is evaluated on the three benchmark datasets for CBIR, namely Corel-5000, Corel-10000 and MIT-Color Vistex respectively. The proposed technique attains substantial improvement as compared to other state-ofthe-art feature descriptors in terms of various evaluation parameters such as ARP and ARR on the respective databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.