This paper presents an investigation of different cruciform specimen designs for the characterization of sheet molding compound (SMC) under biaxial loading. The considered material is a discontinuous glass fiber reinforced thermoset. We define various (material-specific) requirements for an optimal specimen design. One key challenge represents the achievement of a high strain level in the center region of the cruciform specimen in order to observe damage, at the same time prevention of premature failure in the clamped specimen arms. Starting from the ISO norm for sheet metals, we introduce design variations, including two concepts to reinforce the specimens' arms. An experimental evaluation includes two different loading scenarios, uniaxial tension and equi-biaxial tension. The best fit in terms of the defined optimality criteria, is a specimen manufactured in a layup with unidirectional reinforcing outer layers where a gentle milling process exposed the pure SMC in the center region of the specimen. This specimen performed superior for all considered loading conditions, for instance, in the uniaxial loading scenario, the average strain in the center region reached 87% of the failure strain in a uniaxial tensile bone specimen.
Common cruciform specimen for biaxial tensile testing of sheet moulding compound, take damage and finally fail in uniaxially loaded areas. When using these specimen, an observation of damage initialization and failure in biaxially loaded areas is, therefore, not possible. In this paper, a parametric shape optimization is described to find a more suitable specimen shape. The parametrization of the specimen is presented. Objective functions are introduced to measure the appropriateness of specimen. A weighted summation transfers the constraint multiobjective optimization problem into a constraint scalar-valued problem. Findings of experiments suggest that a specimen shape with straight, non-tapering arms and slits along the arms is reasonable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.