Ground level ozone (O3) concentration was monitored during the period of December 2004 to November 2005 in an urban area in Greater Cairo (Haram, Giza). During the winter and summer seasons, nitrogen dioxide (NO2) and nitric oxide(NO) concentrations and meteorological parameters were also measured. The mean values of O3 were 43.89, 65.30, 91.30 and 58.10 ppb in daytime and 29.69, 47.80, 64.00 and 42.70 ppb in whole day (daily) during the winter, spring, summer and autumn seasons, respectively. The diurnal cycles of O3 concentrations during the four seasons revealed a uni-modal peak in the mid-day time, with highest O3 levels in summer due to the local photochemical production. The diurnal variations in NO and NO2 concentrations during the winter and summer showed two daily peaks linked to traffic density. The highest levels of NOx were found in winter. Nearly, 75%, 100%, 34.78% and 52.63% of the mean daytime concentrations of O3 during spring,summer, autumn and the whole year, respectively, exceeded the Egyptian and European Union air quality standards (60 ppb) for daytime (8-h) O3 concentration. About, 41.14% and 10.39% of the daytime hours concentrations and 14.93% and 3.77% of the daily hour concentrations in summer and the whole year, respectively, exceeded the Egyptian standard (100 ppb) for maximum hourly O3 concentration, and photochemical smog is formed in the study area (Haram) during a periods represented by the same percentages. This was based on the fact that photochemical smog usually occurs when O3 concentration exceeds 100 ppb. The concentrations of O3 precursors (NO and NO2) in weekends were lower than those found in weekdays, whereas the O3 levels during the weekends were high compared with weekdays. This finding phenomenon is known as the "weekend effect". Significant positive correlation coefficients were found between O3 and temperature in both seasons and between O3 and relative humidity in summer season, indicating that high temperature and high relative humidity besides the intense solar radiation (in summer) are responsible for the formation of high O3 concentrations.
Ozone is a pollutant of major concern because of its well recognised effects upon human health and crop yields. This study analyses in depth a new dataset for ozone from Jeddah, a coastal city in Saudi Arabia within the Middle Eastern region, for which very few ozone data are currently available, collected between March 2012 and February 2013. The measurements presented include NO, NO 2 and ozone as well as relevant meteorological variables. The data show a marked seasonal variation in ozone with highest concentrations in the summer months and lowest average concentrations in the winter. Concentrations also show a substantial difference between weekdays and weekends, with higher NO and NO 2 on weekdays, but lower concentrations of ozone. Plots of total oxidant versus NO x concentration indicate background concentrations of ozone (at zero NO x ) ranging from 38.2 ppb in January to 59 ppb in May consistent with the northern hemisphere spring maximum in ozone concentrations. The slope of total oxidant/NO x varies from 0.13 in March to 0.68 in August. The two summer months of July and August are anomalous with slopes of around double that of other months, suggesting a higher efficiency of ozone production at lower primary pollutant concentrations arising from much reduced daytime traffic.A substantial weekend/weekday difference in ozone which is higher at weekends appears to be attributable to lower daytime traffic activity and hence reduced emissions of NO x to a "NO x -saturated" atmosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.