Many assumptions have been made about the nature and character of desertification in West Africa. This paper examines the history of this issue, reviews the current state of our knowledge concerning the meteorological aspects of desertification, and presents the results of a select group of analyses related to this question. The common notion of desertification is of an advancing "desert," a generally irreversible anthropogenic process. This process has been linked to increased surface albedo, increased dust generation, and reduced productivity of the land. This study demonstrates that there has been no progressive change of either the Saharan boundary or vegetation cover in the Sahel during the last 16 years, nor has there been a systematic reduction of "productivity" as assessed by the water-use efficiency of the vegetation cover. WTiile it also showed little change in surface albedo during the years analyzed, this study suggests that a change in albedo of up to 0.10% since the 1950s is conceivable.
The Global Precipitation Climatology Project (GPCP) satellite estimates have approximately twice the magnitude of estimates produced from the rain gauges used by the GPCP in central equatorial Africa. Different possible explanations are identified and investigated. The first is that there may not be enough GPCP rain gauges in the area to provide accurate estimates of rainfall for comparisons with satellite estimates. A comparison of the time-averaged GPCP rain gauge estimate with a long-term (over 40 yr) climatology indicates that the GPCP gauge estimates are similar to long-term rainfall averages, suggesting that the GPCP rain gauge analysis is not underestimating rainfall. Two other possible explanations related to the physical properties of the air masses in this region are studied. Evidence from the literature and from estimates of the effective radii of cloud droplets suggests that there may be an abundance of aerosols in central Africa, resulting in an abundance of cloud condensation nuclei, small drops, and inefficient rain processes. The second explanation is that convective clouds forming under dry conditions generally have cloud bases considerably higher than those of clouds forming in moist environments. This leads to an increase in the evaporation rate of the falling rain, resulting in less precipitation reaching the ground. Analysis of the moisture distributions from both the National Centers for Environmental Prediction numerical weather prediction model reanalysis data and the National Aeronautics and Space Administration Water Vapor Project global moisture dataset reveals that the lower troposphere in this region of Africa is relatively dry, which suggests that cloud bases are high.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.