Concurrent systems consist of many components which may execute in parallel and are complex to design, to analyze, to verify, and to implement. The complexity increases if the systems have real-time constraints, which are very useful in avionic, spatial and other kind of embedded applications. In this paper we present a logical framework for defining and validating real-time formalisms as well as reasoning methods over them. For this purpose, we have implemented in the Coq proof assistant well known semantic domains for real-time systems based on labelled transitions systems and timed runs. We experiment our framework by considering the real-time CSP-based language fiacre, which has been defined as a pivot formalism for modeling languages (aadl, sdl, ...) used in the TOPCASED project. Thus, we define an extension to the formal semantic models mentioned above that facilitates the modeling of fine-grained time constraints of fiacre. Finally, we implement this extension in our framework and provide a proof method environment to deal with real-time system in order to achieve their formal certification. ⋆. This work has been partly funded by the FNRAE project Quarteft.
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. Abstract. In this paper, we suggest an automatic technique for checking the timed weak simulation between timed transition systems. The technique is an observation-based method in which two timed transition systems are composed with a timed observer. A µ-calculus property that captures the timed weak simulation is then verified on the result of the composition. An interesting feature of the suggested technique is that it only relies on an untimed µ-calculus model-checker without any specific algorithm needed to analyze the result of the composition. We also show that our simulation relation supports interesting results concerning the trace inclusion and the preservation of linear properties. Finally, the technique is validated using the FIACRE/TINA toolset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.