Long non-coding RNAs (lncRNA) have been shown to play important roles in the development and progression of cancer. Here, we discovered a novel long noncoding RNA (lncRNA) FEZF1 antisense RNA1 (FEZF1-AS1) is markedly upregulated in human primary colorectal carcinoma (CRC) and associated with CRC metastasis and poor prognosis. Moreover, the downregulation of FEZF1-AS1 expression significantly inhibited the CRC cells proliferation, migration and invasiveness, suppressed S-phase entry in vitro, and repressed tumor growth and metastasis in vivo. In contrast, overexpression of FEZF1-AS1 could promote the aggressive behaviors of CRC cells. We further discovered that the downregulation of FEZF1-AS1 reduced its sense-cognate gene FEZF1 mRNA and protein expression in CRC cells. There was a positive correlation between FEZF1-AS1 and FEZF1 expression in CRC. Moreover, FEZF1 knockdown also significantly suppressed CRC cell proliferation, migration, and invasion. Our findings indicate that the dysregulation of FEZF1-AS1 participates in colorectal tumorigenesis and progression, which might be achieved, at least in part, through FEZF1 induction.
Mesoderm induction early response 1, family member 3 (MIER3) has recently been identified as a potential cancer susceptibility gene. However, the expression pattern and the role of MIER3 in the progression of colorectal cancer (CRC) have not yet been well characterized. Here, we reported that MIER3 was significantly reduced in human primary colorectal cancer and was associated with CRC metastasis and poor prognosis. Moreover, the up-regulation of MIER3 expression significantly inhibited CRC cell proliferation, migration and invasion in vitro and repressed tumor growth and metastasis in vivo. In contrast, down-regulation of MIER3 could promote the aggressive behaviors of CRC cells. Furthermore, our study showed that MIER3 inhibited cell proliferation and invasion partially via reduction of Sp1 and subsequent suppression of epithelial-mesenchymal transition (EMT). In conclusion, our data suggested that MIER3 plays a potential tumor suppressor role in CRC progression and may be a potentially valuable clinical prognostic marker of this disease.
Long non-coding RNAs (lncRNAs) have been demonstrated to serve important roles in the development and progression of cancer. Recently HNF1A antisense RNA 1 (HNF1A-AS1), a lncRNA, has been reported as exhibiting a potential oncogenic role in the development of many types of cancer. However, the expression and the role of HNF1A-AS1 in colorectal carcinoma (CRC) remains unclear. In the present study, the role of HNF1A-AS1 in CRC was examined for the first time and its correlation with CRC cell biological behaviors was analyzed. The results demonstrated that HNF1A-AS1 was distinctly upregulated in CRC tissues and associated with CRC metastasis to the lymph nodes. Reverse transcription-quantitative polymerase chain reaction revealed that HNF1A-AS1 was also upregulated in CRC cell lines and localized in the nucleus. In addition, knockdown of HNF1A-AS1 expression notably inhibited CRC cell proliferation, migration, invasion and colony formation, and suppressed S-phase entry in vitro. Taken together, these results suggested that HNF1A-AS1 might serve as a promising prognostic marker for CRC tumorigenesis and progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.