Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
A Bayesian model-based clustering method is proposed for clustering objects on the basis of dissimilarites. This combines two basic ideas. The first is that the objects have latent positions in a Euclidean space, and that the observed dissimilarities are measurements of the Euclidean distances with error. The second idea is that the latent positions are generated from a mixture of multivariate normal distributions, each one corresponding to a cluster. We estimate the resulting model in a Bayesian way using Markov chain Monte Carlo. The method carries out multidimensional scaling and model-based clustering simultaneously, and yields good object configurations and good clustering results with reasonable measures of clustering uncertainties. In the examples we study, the clustering results based on low-dimensional configurations were almost as good as those based on high-dimensional ones. Thus, the method can be used as a tool for dimension reduction when clustering high-dimensional objects, which may be useful especially for visual inspection of clusters.We also propose a Bayesian criterion for choosing the dimension of the object configuration and the number of clusters simultaneously. This is easy to compute and works reasonably well in simulations and real examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.