The aim of this study was to determine the expression of eight other functional transporter genes upon acrAB inactivation and also the expression of acrAB when the function of eight other transporters are impaired in Salmonella enterica. We used single- or multigene deletion mutants (i.e., ΔacrA, ΔacrB, ΔtolC, ΔacrAB, ΔacrEF, ΔacrD, ΔmdsABC, ΔmdtABC, ΔemrAB, ΔmacAB, ΔmdfA, ΔmdtK, ΔacrABramA, ΔacrABmarA, and ΔacrABsoxS) and real time (RT)-PCR to quantify the expression of different pump and regulator genes; infection ability was characterized by adhesion and invasion assays. The expression of acrAB operon was increased upon acrB inactivation. Single deletion of acrA or tolC also increased expression of acrB. The deletion of acrAB increased expression of eight other functional efflux pumps genes and vice versa, in which increased expression of ramA and marA was also detected. Mutants containing single deletions of functional pump genes were attenuated in cells. In conclusion, there is a feedback mechanism that coordinates regulation of AcrAB-TolC and eight other functional efflux pumps through the global transcriptional regulators ramA and marA in S. enterica serovar Typhimurium.
Carbapenem resistance in members of the order
Enterobacterales
is a growing public health problem that is associated with high mortality in developing and industrialized countries. Moreover, in the field of veterinary medicine, the occurrence of New Delhi metallo-β-lactamase-producing
Escherichia coli
isolates in animals, especially food-producing animals, has become a growing concern in recent years.
The aim of this study was to investigate the difference in resistance mechanisms and fitness of Salmonella Typhimurium (ST) and Salmonella Enteritidis (SE) mutants selected during the evolution of resistance under exposure to increasing ciprofloxacin concentrations in vitro. Mutations in quinolone target genes were screened by PCR. Phenotypic characterization included susceptibility testing by the broth dilution method, investigation of efflux activity and growth rate, and determination of the invasion of human intestinal epithelium cells in vitro. The two Salmonella serotypes exhibited differences in target gene mutations and efflux pump gene expression during the development of resistance. In the parental strains, ST had a competitive advantage over SE. During the development of resistance, initially, the SE strain was more competitive. However, once ciprofloxacin resistance was acquired, ST once again became the more competitive strain. In the absence of bile salts or at 0.1% bile, the growth rate of SE was initially greater than that of ST, but once ciprofloxacin resistance was acquired, ST had higher growth rates. ST strains showed decreased invasion of epithelial cells in 0.1% bile. These data indicate that ciprofloxacin-resistant ST strains are more competitive than ciprofloxacin-resistant SE strains.
Development of fluoroquinolone resistance can involve several mechanisms that include chromosomal mutations in genes (gyrAB and parCE) encoding the target bacterial topoisomerase enzymes, increased expression of the AcrAB-TolC efflux system, and acquisition of transmissible quinolone-resistance genes. In this study, 176 Salmonella isolates from animals with a broad range of ciprofloxacin MICs were collected to analyze the contribution of these different mechanisms to different phenotypes. All isolates were classified according to their ciprofloxacin susceptibility pattern into five groups as follows: highly resistant (HR), resistant (R), intermediate (I), reduced susceptibility (RS), and susceptible (S). We found that the ParC T57S substitution was common in strains exhibiting lowest MICs of ciprofloxacin while increased MICs depended on the type of GyrA mutation. The ParC T57S substitution appeared to incur little cost to bacterial fitness on its own. The presence of PMQR genes represented an route for resistance development in the absence of target-site mutations. Switching of the plasmid-mediated quinolone resistance (PMQR) gene location from a plasmid to the chromosome was observed and resulted in decreased ciprofloxacin susceptibility; this also correlated with increased fitness and a stable resistance phenotype. The overexpression of AcrAB-TolC played an important role in isolates with small decreases in susceptibility and expression was upregulated by MarA more often than by RamA. This study increases our understanding of the relative importance of several resistance mechanisms in the development of fluoroquinolone resistance in Salmonella from the food chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.