Calcium regulation of actomyosin activity in the nematode, Caenorhabditis elegans, has been studied with purified proteins and crude thin filaments. Actin and tropomyosin have been purified from C. elegans and shown to be similar in most respects to actin and tropomyosin from rabbit skeletal muscle. The actin comigrates with rabbit actin on polyacrylamide-sodium dodecyl sulfate gel electrophoresis, forms similar filaments and paracrystals, and activates the Mg2+-ATPase of rabbit myosin heads as efficiently as rabbit actin. Nematode tropomyosin has a greater apparent molecular weight (estimated by mobility on polyacrylamide-sodium dodecyl sulfate gels) than the rabbit protein, yet it forms Mg2+-paracrystals with a slightly shorter periodicity. Native thin filaments extracted from nematodes activate rabbit myosin subfragment 1 Mg2+-ATPase in a calcium sensitive manner; the extent of activation is threefold greater in 0.2 mM CaCl2 than in the absence of calcium. This observation suggests that the thin filaments contain components which are functionally equivalent to vertebrate troponins. Calcium is also required for maximal activation of the Mg2+-ATPase of purified nematode myosin by pure rabbit F-actin. C. elegans therefore has both myosin and thin filament-linked calcium regulatory systems. The origin of the actin, tropomyosin, and myosin from different tissues and the use of genetic analysis to answer questions about assembly and function in vivo are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.