Endometriosis is characterized by inflammation and fibrotic changes. Our previous study using a mouse model showed that proinflammatory factors present in peritoneal hemorrhage exacerbated inflammation in endometriosis-like grafts, at least in part through the activation of prostaglandin (PG) E2 receptor and protease-activated receptor (PAR). In addition, menstruation-related factors, PGE2 and thrombin, a PAR1 agonist (P/T) induced epithelial-mesenchymal transition (EMT) of endometrial cells under hypoxia. However, the molecular mechanisms by which P/T induce development of endometriosis have not been fully characterized. To investigate the effects of P/T, RNA extracted from endometrial stromal cells (ESCs) treated with P/T were subjected to RNA sequence analysis, and identified activin A, FOS, GATA2 as upregulated genes. Activin A increased the expression of connective tissue growth factor (CTGF) and mesenchymal marker genes in ESCs. CTGF induced the expression of fibrosis marker type I collagen, fibronectin, and α-smooth muscle actin (αSMA), indicating fibroblast to myofibroblast transdifferentiation (FMT) of ESCs. In addition, activin A, FOS, GATA2, CTGF, and αSMA were localized in endometriosis lesions. Taken together, our data show that P/T induce changes resembling EMT and FMT in ectopic ESCs derived from retrograde menstruation, and that these are associated with fibrotic changes in the lesions. Pharmacological means that block P/T-induced activin A and CTGF signaling may be strategies to inhibit fibrosis in endometriotic lesions.
Stathmin, a phosphoprotein that modulates microtubule dynamics, is highly expressed in breast cancer cells. Eribulin, a microtubule‐depolymerizing agent, is used to treat patients with advanced breast cancer. However, the detailed mechanisms underlying the action of eribulin during microtubule catastrophe, and the interaction between eribulin and stathmin dynamics, remain unclear. Here, we investigated the role of stathmin in the antiproliferative activity of eribulin in breast cancer cells. Eribulin induced phosphorylation of stathmin in MCF7 and MDA‐MB‐231 cells; this was attenuated by an inhibitor of protein kinase A (H89) and an inhibitor of Ca
2+
/calmodulin‐dependent kinase II (KN62). In addition, expression of phosphorylated stathmin was reduced by the protein phosphatase PP2A activator FTY720 but increased by the PP2A inhibitor okadaic acid. Of note, expression of PP2A subunits in eribulin‐treated cells decreased, although eribulin did not affect the phosphatase activity of recombinant PP2A directly. Furthermore, the antiproliferative effect of eribulin was stronger in stathmin‐overexpressing cells. These results suggest that stathmin dynamics are closely associated with the antiproliferative effects of eribulin and stathmin is a possible biomarker for predicting the therapeutic effects of eribulin in breast cancer patients.
The appropriate differentiation of endometrial stromal cells (ESCs) into decidual cells is required for embryo implantation and subsequent placentation into humans. Decidualization is accompanied by the appearance of senescent-like cells. We recently reported the secretory phase-specific downregulation of endometrial progesterone receptor membrane component 1 (PGRMC1) and enhanced decidualization upon PGRMC1 knockdown and inhibition in cultured ESCs. However, it remains unknown whether PGRMC1 is involved in cellular senescence during decidualization. Here, we showed that the small interfering RNA (siRNA)-mediated knockdown of PGRMC1 and the inhibition of PGRMC1 by AG-205 increased the expression of the transcription factor forkhead box protein O1 (FOXO1) and the senescence-associated β-galactosidase activity in cAMP analog- and progesterone-treated ESCs. Furthermore, the knockdown of FOXO1 repressed the decidual senescence induced by siRNA-based PGRMC1 knockdown or AG-205 treatment. Taken together, the decreased PGRMC1 expression in ESCs may accelerate decidualization and cellular senescence via the upregulation of FOXO1 expression for appropriate endometrial remodeling and embryo implantation during the secretory phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.