High-aspect ratio ordered nanomaterial arrays exhibit several unique physicochemical and optical properties. Porous anodic aluminum oxide (AAO) is one of the most typical ordered porous structures and can be easily fabricated by applying an electrochemical anodizing process to Al. However, the dimensional and structural controllability of conventional porous AAOs is limited to a narrow range because there are only a few electrolytes that work in this process. Here, we provide a novel anodizing method using an alkaline electrolyte, sodium tetraborate (Na2B4O7), for the fabrication of a high-aspect ratio, self-ordered nanospike porous AAO structure. This self-ordered porous AAO structure possesses a wide range of the interpore distance under a new anodizing regime, and highly ordered porous AAO structures can be fabricated using pre-nanotexturing of Al. The vertical pore walls of porous AAOs have unique nanospikes measuring several tens of nanometers in periodicity, and we demonstrate that AAO can be used as a template for the fabrication of nanomaterials with a large surface area. We also reveal that stable anodizing without the occurrence of oxide burning and the subsequent formation of uniform self-ordered AAO structures can be achieved on complicated three-dimensional substrates.
Gold nanoparticles were fabricated on an ordered aluminum dimple array via aluminum anodizing, sputter coating, and thermal treatment, and the transformation behavior and nanostructural characterization were investigated in detail. Electropolished aluminum specimens were anodized in an oxalic acid solution under self-ordering conditions at 40 V, and then the porous alumina was selectively dissolved to expose an ordered aluminum dimple array with each dimple measuring 100 nm. A thin layer of gold was coated onto the dimple array, and a thermal treatment was subsequently performed. The gold layer was transformed into numerous particles by the thermal treatment due to dewetting. When the values of gold layer thickness, thermal treatment temperature, and thermal treatment duration were optimized, the gold particles were located at the bottom of each aluminum dimple. Consequently, multiply-twinned particles with polygonal and elliptical shapes were regularly distributed on the aluminum dimple array treated at 473 K. Although the rate of the transformation induced by dewetting increased with the temperature of the thermal treatment, non-uniform gold nanostructures were formed by extended thermal treatment at 873 K. The gold particles formed on the aluminum surface exhibited excellent adhesion upon ultrasonication.
Anodizing Al in chromic acid is a very useful surface finishing process for corrosion protection and nanoscale porous structure fabrication, whereas the self-ordering of porous anodic alumina (PAA) in chromic acid has never been found to date. Herein, we provide a self-ordered PAA film possessing numerous sub100-nm-scale characteristic bumps through anodizing in chromic acid at high temperature. Anodizing of high purity Al plates in a 0.3 M chromic acid solution at conventional low temperatures, such as 293 K, leads to the formation of a disordered PAA film, whereas anodizing at a high temperature of 348 K causes the self-ordering behavior of the pore structure. The PAA film grown in the initial stage possessed the highest regularity, and it decreased with anodizing time due to pore branching during anodizing. A highly ordered PAA film measuring approximately 340 nm in interpore distance can be fabricated by short-term, two-step anodizing in chromic acid at 348 K and 120 V. The ordered PAA film possesses a characteristic nanostructure consisting of hexagonally arranged 100-nm-scale pores and sub100-nm-scale disordered bumps on their pore walls without any electrolyte chromate anion.
The initial growth of a porous alumina film with a large-scale cell structure formed by galvanostatic anodizing in etidronic acid was investigated in detail by high-resolution microscopy. High-purity aluminum plates were galvanostatically anodized in etidronic acid at 2.5–20.0 Am−2. The formation of an anodic oxide and the subsequent instability of the outer oxide simultaneously occurred at the early stage of the linear voltage increase during the anodizing process. Accordingly, a wavy interface boundary between the aluminum oxide that contained incorporated anions and the nearly pure aluminum oxide formed in the anodic oxide. The surviving pores grew as the thickness of the oxide film increased, and a clear porous alumina film with a pore at the center of each cell formed until the voltage reached its maximum value. Finally, steady-state growth of the porous alumina film occurred at the plateau voltage region after a slight voltage decrease. Eggplant-like anion distributions were measured at the head of the pores due to the viscous flow of the anodic oxide. The nanomorphology of the porous alumina film strongly depended on the current density due to the difference in the degree of oxide formation and localized oxide dissolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.