A high natural radiation zone was investigated for the first time in Afra hot springs of Jordan. The radiation levels were measured using a portable Geiger-Muller counter and an Na(Tl) detector. The measured absorbed dose rates in air ranged from 10 to 1800 nGy h(-1), suggesting that the concentration of natural radioactive materials is very high compared with their normal abundance in crustal rocks. A single high-radiation zone was also found in a nearby area where a gamma radiation dose rate of 4.0 mGy h(-1) was measured. On the basis of this measurement, the area was marked as a high-radiation zone. This region is far from tourist areas and not easily reached. No intervention measures are needed to protect people because the spa area is not well inhabited, having only daily visitors (average frequency of 10 days per year per individual). The dose received by workers in the spa area should be considered and the worker should be monitored by personal radiation dosimeters, such as thermoluminescent dosimeters.
Problem statement:The dispersion of radioactive materials in the environment related to escaping of noble gases, halogens and aerosols of non-volatile radioactive materials, from the reactor containment during normal operations, or in the event of a sever reactor accident. Approach: radionuclide dispersion in the environment is demonstrated by mathematical tools which are the partial differential equations, mainly the diffusion equation. A mathematical model to calculate the concentration of nuclear pollutants (radioactivity) with certain boundary conditions is constructed. Results: Solving the mathematical model and using some approximations lead to a distribution represents a model for plume of radioactive pollutants dispersed in two dimensions normal to the wind direction in which the plume moves as an entire non-dispersible unit. Conclusion: The obtained result theoretically are very close to those achieved experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.