Background Multiple sclerosis (MS) is a widespread neurological autoimmune disease that includes episodes of demyelination in the central nervous system (CNS). The accumulated evidence has suggested that aryl hydrocarbon receptor (Ahr), a ligand-activated transcription factor, is a promising treatment target for MS. Thus, the current study aimed to identify a novel Ahr ligand with anti-inflammatory potential in experimental autoimmune encephalomyelitis (EAE). Methods An in silico analysis was carried out to predict interactions between Ahr and potential natural ligands. The effects of a predicted interaction were examined in vitro using CD4 + T cells under T helper17 (Th17) cell-polarizing conditions and lipopolysaccharide (LPS)-stimulated macrophages. Silencing Ahr and microRNA (miR)-132 was achieved by electroporation. Myelin oligodendrocyte glycoprotein (MOG) 35-55 and the adoptive transfer of encephalitogenic CD4 + T cells were used to induce EAE. Results Molecular docking analysis and in vitro data identified gallic acid (GA) as a novel Ahr ligand with potent activation potential. GA induced the expression of Ahr downstream genes, including cytochrome P450 family 1 subfamily A member 1 ( Cyp1a1 ) and the miR-212/132 cluster, and promoted the formation of the Ahr/Ahr nuclear translocator (Arnt) complex. In vivo , GA-treated mice were resistant to EAE and exhibited reduced levels of proinflammatory cytokines and increased levels of transforming growth factor-β (TGF-β). Furthermore, GA reduced infiltration of CD4 + CD45 + T cells and monocytes into the CNS. The anti-inflammatory effects of GA were concomitant with miR-132-potentiated cholinergic anti-inflammation and the regulation of the pathogenic potential of astrocytes and microglia. Inducing EAE by adoptive transfer revealed that CD4 + T cells were not entirely responsible for the ameliorative effects of GA. Conclusion Our findings identify GA as a novel Ahr ligand and provide molecular mechanisms elucidating the ameliorative effects of GA on EAE, suggesting that GA is a potential therapeutic agent to control inflammation in autoimmune diseases such as MS.
The new emerging Middle East Respiratory Syndrome Coronavirus (MERS CoV) encodes several resistance proteins against the innate immune response of the host, including interferon (IFN) resistance. Monitoring of the status of such proteins will be important to track viral pathogenicity. In this study, molecular dynamics approaches were used to investigate MERS CoV Non-Structural Protein 3 (NSP3) specific proteins that resist host innate immunity. MERS CoV papain-like protease (Plpro) was more conformationally flexible than Severe Acute Respiratory Syndrome CoV (SARS) CoV Plpro. This flexibility was evident in either the free form or when bound with ubiquitin. There were marked changes in the root-mean-square deviation (RMSD) in the ubiquitin like domain (Ubl) and the fingers subdomain of the catalytic domain of Plpro. An interesting feature is the dynamic change in Ubl, which shows a rigid conformation in the free form of Plpro but is fully flexible upon the binding of ubiquitin. This increased flexibility could be important for the downstream effects of the interaction with other proteins and the inhibition of the innate immunity. Four major residues involved in deubiquitination, L106, P163, R168 and F265, were conserved in all MERS CoVs and differed from other Beta CoVs. These conserved CoV residues were associated with lower deubiquitinating activity and render MERS CoV Plpro with less potent deubiquitinating potential. The number of residues and total interactions with ubiquitin were lower for the MERS CoV Plpro than for the SARS CoV. These factors contribute to the lower deubiquitinating actions of MERS CoV NSP3 and its subsequently lower interaction with the host immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.