The immune response in heparin-induced thrombocytopenia is initiated by and directed to large multimolecular complexes of platelet factor 4 (PF4) and heparin (H). We have previously shown that PF4:H multimolecular complexes assemble through electrostatic interactions and, once formed, are highly immunogenic in vivo. Based on these observations, we hypothesized that other positively charged proteins would exhibit similar biologic interactions with H. To test this hypothesis, we selected 2 unrelated positively charged proteins, protamine (PRT) and lysozyme, and studied H-dependent interactions using in vitro and in vivo techniques. Our IntroductionHeparin-induced thrombocytopenia (HIT) is an immune-mediated disorder caused by antibodies that recognize multimolecular complexes of platelet factor 4 (PF4), a positively charged platelet protein, and heparin (H), a negatively charged carbohydrate. We, and others, have shown that PF4 and H complexes assemble primarily through nonspecific electrostatic interactions governed by principles of colloidal chemistry. [1][2][3][4][5] In colloidal systems, molecules of opposite charge "aggregate" or grow in size due to effects of charge neutralization. Particle interactions are frequently dependent on stoichiometric ratios of the 2 compounds, with the largest complexes occurring at molar ratios of the compounds leading to charge neutralization. When either compound is in molar excess, charge restabilization occurs and repulsive forces predominate, leading to reduced complex size and/or complex disassembly.Studies to date indicate that PF4/H multimolecular complex formation is central to the pathogenesis of HIT. The characteristic bell-shaped curve seen with HIT antibody binding over a range of H concentrations coincides with H-dependent formation of multimolecular complexes. 2,3 HIT antibody binding, as gauged by serologic assays or functional studies of platelet activation, is optimal when multimolecular complexes form at or near equimolar ratios of PF4:H. However, antibody binding is markedly reduced with increasing H concentrations, a phenomenon that can be directly attributed to loss of complex formation. [2][3][4] Recent studies from our laboratory indicate that similar H-dependent changes affect the immunogenicity of PF4/H complexes in vivo. 5,6 Our studies demonstrate that PF4/H complexes are immunogenic over a certain range of H concentrations associated with multimolecular complex formation and that the immune response is attenuated when PF4 or H is given alone or when H is in molar excess of PF4. 5 H and H-like molecules bind several positively charged proteins in addition to PF4. 7 These H-binding proteins (HBPs) are structurally and functionally diverse, and include, to name a few, nuclear proteins (protamine), enzymes (C1 esterase and lysozyme), adhesion molecules (fibronectin and vitronectin) growth factors (fibroblast growth factor), and lipid-binding proteins (apolipoprotein E and lipoprotein lipase). To date, it appears that a majority of HBP-H interactions a...
Summary Background Heparin-induced thrombocytopenia (HIT) is an iatrogenic complication of heparin therapy caused by antibodies to a self-antigen, platelet factor (4) and heparin. The reasons why antibodies form to PF4/heparin, but not to PF4 bound to other cellular glycosaminoglycans are poorly understood. Objective To investigate differences in cellular responses to cell-bound PF4 and PF4/heparin complexes, we studied the internalization of each by peripheral blood-derived monocytes, dendritic cells and neutrophils. Methods and Results Using unlabeled, fluorescently-labeled antigen and/or labeled monoclonal antibody to PF4/heparin complexes (KKO), we show that PF4/heparin complexes are taken up by monocytes in a heparin-dependent manner and are internalized by human monocytes and dendritic cells, but not by neutrophils. Complexes of PF4/low-molecular weight heparin and complexes composed of heparin and murine PF4, protamine, or lysozyme are internalized similarly, suggesting a common endocytic pathway. Uptake of complexes is mediated by macropinocytosis, as shown by inhibition using cytochalasin D and amiloride. Internalized complexes are transported intact to late endosomes, as indicated by co-staining of vesicles with KKO and lysosomal associated membrane protein-2 (LAMP-2). Lastly, we show cellular uptake is accompanied by expression of MHCII and CD83 co-stimulatory molecules. Conclusions Taken together, these studies establish a distinct role for heparin in enhancing antigen uptake and activation of the initial steps in the cellular immune response to PF4-containing complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.