BACKGROUND: Almost 2 percent of murine blood red blood cells (RBCs) are destroyed each day and are replaced by fresh RBCs generated through the process of erythropoiesis. RBCs to be destroyed are phagocytosed by macrophages in the reticuloendothelial system, especially in the spleen. CD47 molecules on RBCs may regulate the susceptibility of RBC to destruction by phagocytosis because its recognition by inhibitory receptor (signal regulatory protein a) on macrophages sends a negative signal, which if sufficiently strong, may abort the phagocytic response altogether. The aim of this study was to investigate whether agedependent changes in CD47 expression on circulating
Heparin-induced thrombocytopenia (HIT) is a thrombotic disorder initiated by antibodies to complexes between platelet factor 4 (PF4) and heparin. The risk of recurrent thromboembolism persists after heparin is cleared and platelet activation leading to release of PF4 has dissipated. We asked whether antigenic complexes between polyphosphates and PF4 released from activated platelets might intensify or sustain the prothrombotic phenotype of HIT. PF4 forms stable, ultralarge complexes with polyphosphates of various sizes, including those released from platelets, which are recognized by the HIT-like monoclonal KKO, an immunoglobulin G2bκ monoclonal heparin/PF4 binding antibody, and by human HIT antibodies. KKO helps to protect PF4/polyphosphate complexes from degradation by phosphatases. Complement is activated when HIT antibodies bind to PF4/polyphosphate complexes and PF4 reverses the inhibition of complement by polyphosphates. Polyphosphates and PF4 are stored primarily in separate granules in resting platelets, but they colocalize when the cells are activated. Platelets activated by subaggregating doses of thrombin receptor activating peptide release polyphosphates and PF4, which form antigenic complexes that allow KKO to further activate platelets in the absence of heparin and exogenous PF4. These studies suggest that thrombin- or immune complex-mediated release of endogenous antigenic PF4/polyphosphate complexes from platelets may augment the prothrombotic risk of HIT and perpetuate the risk of thrombosis after heparin has been discontinued.
We have recently developed a new technique to objectively identify erythrocyte cohorts of defined age in mouse blood. The technique (termed double in vivo biotinylation, DIB) involves an initial biotinylation of all erythrocytes in circulation, followed after a few days by a second biotinylation, at a lower density, that labels the biotin-negative erythrocytes that have entered since the first biotinylation. The proportions of biotinhigh, biotinlow, and biotinnegative erythrocytes are enumerated by flow cytometry. The DIB technique allows us to track age-related changes on erythrocyte cohorts (Protocol A), and to simultaneously identify very young and older erythrocyte populations in the blood (Protocol B). Using this technique, we have reexamined: i) the relationship between age and buoyant density of erythrocytes, ii) erythrocyte destruction through a random removal mechanism, and iii) the expression of phosphatidylserine on aging erythrocytes. We have also used the DIB technique to study age-related changes in the expression of various markers like CD47 and CD147 and green autofluorescence in aging erythrocyte populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.