BACKGROUND: Almost 2 percent of murine blood red blood cells (RBCs) are destroyed each day and are replaced by fresh RBCs generated through the process of erythropoiesis. RBCs to be destroyed are phagocytosed by macrophages in the reticuloendothelial system, especially in the spleen. CD47 molecules on RBCs may regulate the susceptibility of RBC to destruction by phagocytosis because its recognition by inhibitory receptor (signal regulatory protein a) on macrophages sends a negative signal, which if sufficiently strong, may abort the phagocytic response altogether. The aim of this study was to investigate whether agedependent changes in CD47 expression on circulating
Mycobacterium tuberculosis modulates levels and activity of key intracellular second messengers to evade protective immune responses. Calcium release from voltage gated calcium channels (VGCC) regulates immune responses to pathogens. In this study, we investigated the roles of VGCC in regulating protective immunity to mycobacteria in vitro and in vivo. Inhibiting L-type or R-type VGCC in dendritic cells (DCs) either using antibodies or by siRNA increased calcium influx in an inositol 1,4,5-phosphate and calcium release calcium activated channel dependent mechanism that resulted in increased expression of genes favoring pro-inflammatory responses. Further, VGCC-blocked DCs activated T cells that in turn mediated killing of M. tuberculosis inside macrophages. Likewise, inhibiting VGCC in infected macrophages and PBMCs induced calcium influx, upregulated the expression of pro-inflammatory genes and resulted in enhanced killing of intracellular M. tuberculosis. Importantly, compared to healthy controls, PBMCs of tuberculosis patients expressed higher levels of both VGCC, which were significantly reduced following chemotherapy. Finally, blocking VGCC in vivo in M. tuberculosis infected mice using specific antibodies increased intracellular calcium and significantly reduced bacterial loads. These results indicate that L-type and R-type VGCC play a negative role in M. tuberculosis infection by regulating calcium mobilization in cells that determine protective immunity.
Effect of lipopolysaccharide (LPS) on RAW264.7 macrophage cell line was studied. LPS-treated RAW264.7 cells increased in cell size and acquired distinct dendritic morphology. At the optimal dose of LPS (1 mg/ml), almost 70% RAW264.7 cells acquired dendritic morphology. Flow cytometric studies indicate that the cell surface markers known to be expressed on dendritic cells and involved in antigen presentation and T cell activation (B 7.1, B 7.2, CD40, MHC class II antigens and CD1d) were also markedly upregulated on LPS-treated RAW 264.7 cells. Our results suggest the possibility that LPS by itself could constitute a sufficient signal for differentiation of macrophages into DC-like cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.