Sperm can recognize bacterial endotoxins by TLRs present in their membranes. The activated TLRs reduce sperm motility, induce sperm apoptosis and significantly impair the potential for fertilization.
Wingless-type mouse mammary tumor virus integration site family (WNT)/beta-catenin (CTNNB1) pathway components are expressed in ovarian granulosa cells, direct female gonad development, and are regulated by the pituitary gonadotropins. However, the in vivo functions of CTNNB1 during preovulatory follicular development, ovulation, and luteinization remain unclear. Using a mouse model Ctnnb1((Ex3)fl/fl);Cyp19-Cre (Ctnnb1((Ex3)gc-/-)), expressing dominant stable CTNNB1 in granulosa cells of small antral and preovulatory follicles, we show that CTNNB1 facilitates FSH-induced follicular growth and decreases the follicle atresia (granulosa cell apoptosis). At the molecular level, WNT signaling and FSH synergistically promote the expression of genes required for cell proliferation and estrogen biosynthesis, but decrease FOXO1, which negatively regulates proliferation and steroidogenesis. Conversely, dominant stable CTNNB1 represses LH-induced oocyte maturation, ovulation, luteinization, and progesterone biosynthesis. Specifically, granulosa cells in the Ctnnb1((Ex3)gc)(-/-) mice showed compromised responses to the LH surge and decreased levels of the epidermal growth factor-like factors (Areg and Ereg) that in vivo and in vitro mediate LH action. One underlying mechanism by which CTNNB1 prevents LH responses is by reducing phosphorylation of cAMP-responsive element-binding protein, which is essential for the expression of Areg and Ereg. By contrast, depletion of Ctnnb1 using the Ctnnb1(fl/fl);Cyp19-Cre mice did not alter FSH regulation of preovulatory follicular development or female fertility but dramatically enhanced LH induction of genes in granulosa cells in culture. Thus, CTNNB1 can enhance FSH and LH actions in antral follicles but overactivation of CTNNB1 negatively effects LH-induced ovulation and luteinization, highlighting the cell context-dependent and developmental stage-specific interactions of WNT/CTNNB1 pathway and G protein-coupled gonadotropin receptors in female fertility.
Neuregulin 1 (NRG1) is induced in granulosa cells by LH and acts on granulosa and cumulus cells during ovulation. In this study, we sought to determine the role of NRG1 in oocyte maturation by generating a granulosa cell-specific Nrg1 knockout mouse (Nrg1(flox/flox);Cyp19a1Cre mice [gcNrg1KO]). In the gcNrg1KO mice, meiosis was induced 2 hours earlier than in control mice. More than 60% of the oocytes in the mutant mice spontaneously re-resumed meiosis beyond the MII stage. The percentage of successful fertilization was comparable in oocytes of both genotypes collected at 14 or 16 hours after human chorionic gonadotropin injection but was significantly lower in oocytes of the gcNrg1KO mice at 18 or 20 hours. The number of pups per litter was significantly decreased in gcNrg1KO mice. To determine the molecular events associated with the abnormal progression of meiosis in the gcNrg1KO mouse oocytes, the defects of cumulus/granulosa cell functions were analyzed. The expression of genes involved in luteinization and cumulus expansion was significantly higher at 2 hours after human chorionic gonadotropin injection in the gcNrg1KO mice; this was related to abnormal activation of protein kinase C (PKC) and phosphorylation of connexin-43 in cumulus cells. Changes in connexin-43 by PKC might lead to early meiotic resumption of oocytes in gcNrg1KO mice. We conclude that NRG1 is induced by LH in mural granulosa cells and exerts an important regulatory role in oocyte meiotic maturation and competence by reducing PKC activation in cumulus cells and preventing premature progression to the MII stage that leads to abnormal fertilization and fertility.
PurposeTo determine whether the cycle regimens that are used for endometrial preparation are associated with the birthweight (BW) after assisted reproductive technology (ART) using frozen‐thawed embryo transfer (FET).MethodsThe BW of singletons who were born by ART using FET was compared retrospectively, according to whether a FET was conducted in a hormone replacement therapy cycle (HRT, n = 403) or an ovulatory cycle (OVL, n = 117). The BW after timed intercourse (NAT, n = 162) also was investigated.ResultsThere were no significant differences in the age of the mothers, percentage of primiparas, gestational periods, Body Mass Index, and sex ratio between the HRT and OVL cycles. The average BW from HRT was significantly greater than that of OVL. The BW from HRT was also greater, compared with NAT, while statistical significance was not achieved between OVL and NAT. The putative factors affecting the BW, such as ovarian stimulation protocols, endometrial thickness, and the stage and quality of embryos, could not explain the difference in the BW between the HRT and OVL cycles.ConclusionAn increased BW from ART using FET seems to be ascribable to conditions of the endometrium, but not cryopreservation procedures per se, which might provide a mechanistic framework for understanding heavier neonates who are born by FET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.