The understanding of complex mechanical bone behavior and size-dependent properties ranging from a nano- to a macroscopic level are essential in the biomechanical optimization of implants. The requirements of regenerated tissue at the interface include high strength, fracture toughness related to ductility, and time-dependent energy dissipation and/or elastic-plastic stress distribution. Moreover, a strong relationship between strain signals and peri-implant tissue turnover could be expected, so that ideal implant biomechanics may enable longevity via adaptive bone remodeling.
The use of non-metal clasp denture (NMCD) materials may seriously affect the remaining tissues because of the low rigidity of NMCD materials such as polyamides. The purpose of this study was to develop a high-rigidity glass fiber-reinforced thermoplastic (GFRTP) composed of E-glass fiber and polyamide-6 for NMCDs using an injection molding. The reinforcing effects of fiber on the flexural properties of GFRTPs were investigated using glass fiber content ranging from 0 to 50 mass%. Three-point bending tests indicated that the flexural strength and elastic modulus of a GFRTP with a fiber content of 50 mass% were 5.4 and 4.7 times higher than those of unreinforced polyamide-6, respectively. The result showed that the physical characteristics of GFRTPs were greatly improved by increasing the fiber content, and the beneficial effects of fiber reinforcement were evident. The findings suggest that the injectionmolded GFRTPs are adaptable to NMCDs because of their excellent mechanical properties.
The results indicate that the GFRTPs showed clinically acceptable color stability and might be satisfactory for clinical use. Therefore, GFRTPs are expected to become attractive materials for esthetic dentures.
Removable partial dentures (RPDs) with resin-clasp retentive parts, which are known as non-metal-clasp dentures (NMCDs), have been used as alternatives for conventional RPDs with metal clasp, in case of aesthetic prosthodontic treatments. In this study, a profilometer and dynamic micro-indentation tests were used to investigate the effects of polishing on the surface properties such as surface roughness (Ra), dynamic hardness, and elastic modulus of high-rigidity glass-fiber-reinforced thermoplastics (GFRTPs) composed of E-glass fibers and polypropylene for NMCDs. The Ra values of the GFRTPs after polishing were significantly lower than those before polishing. The values were close to the Ra threshold level of 0.2, which corresponds to an acceptable surface smoothness for denture base materials. Polishing did not significantly change the dynamic hardnesses and elastic moduli of the GFRTPs. The fiber loading did not greatly affect the micromechanical properties of the GFRTPs because the glass-fiber reinforcement is embedded in the polypropylene matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.